Abstract

An optically triggered liquid crystal infiltrated Q-switched photonic crystal laser is demonstrated. A photonic crystal laser cavity was designed and fabricated to support two orthogonally polarized high-Q cavity modes after liquid crystal infiltration. By controlling the liquid crystal orientation via a layer of photoaddressable polymer and a writing laser, the photonic crystal lasing mode can be reversibly switched between the two modes which also switches the laser’s emission polarization and wavelength. The creation of the Q-switched laser demonstrates the benefits of customizing photonic crystal cavities to maximally synergize with an infiltrated material and illustrates the potential of integrating semiconductor nanophotonics with optical materials.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062, (1987).
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489, (1987).
    [CrossRef] [PubMed]
  3. Y. Akahane, T. Asano, B. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944-947, (2003).
    [CrossRef] [PubMed]
  4. S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610, (2000).
    [CrossRef] [PubMed]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821, (1999).
    [CrossRef] [PubMed]
  6. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65, 016608-1-11, (2002).
  7. B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, �??Feasibility of detecting single atoms using photonic bandgap cavities,�?? Nanotechnology 15, S556-S561, (2004).
    [CrossRef]
  8. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, �??Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,�?? Science 308, 1296-1298, (2005).
    [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, �??Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,�?? Nature 432, 200-203, (2004).
    [CrossRef] [PubMed]
  10. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, �??Deterministic coupling of single quantum dots to single nanocavity modes,�?? Science 308, 1158-1161, (2005).
    [CrossRef] [PubMed]
  11. K. Busch, and S. John, �??Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967-970, (1999).
    [CrossRef]
  12. E. Yablonovitch, �??Liquid versus photonic crystals,�?? Nature 401, 539-541, (1999).
    [CrossRef]
  13. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, �??Tunable two-dimensional photonic crystals using liquid-crystal infiltration,�?? Phys. Rev. B 61, R2389-R2392, (2000).
    [CrossRef]
  14. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, �??Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,�?? Appl. Phys. Lett. 82, 2767-2769, (2003).
    [CrossRef]
  15. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, �??Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,�?? Phys. Rev. Lett. 86, 4052-4055, (2001).
    [CrossRef] [PubMed]
  16. Y. Shimoda, M. Ozaki, and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? Appl. Phys. Lett. 79, 3627-3629, (2001).
    [CrossRef]
  17. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, �??Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,�?? Appl. Phys. Lett. 82, 3593-3595, (2003).
    [CrossRef]
  18. R. Hagen, and T. Bieringer, �??Photoaddressable polymers for optical data storage,�?? Adv. Mater. 13, 1805-1810, (2001).
    [CrossRef]
  19. M. Loncar, A. Scherer, and Y. Qiu, �??Photonic crystal laser sources for chemical detection,�?? Appl. Phys. Lett. 82, 4648-4650, (2003).
    [CrossRef]
  20. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, �??Liquid-crystal electric tuning of a photonic crystal laser,�?? Appl. Phys. Lett. 85, 360-362, (2004).
    [CrossRef]
  21. J. T. Ho, J. T. �??Light scattering and quasielastic spectroscopy,�?? in Liquid Crystals, S. Kumar, ed. (Cambridge University Press, Cambridge UK, 2001), pp. 197-239.
  22. By infiltrating the lasers with refractive index calibrated fluids and comparing the lasing redshift with that of the LC infiltrated lasers, we estimated the IR refractive indices of the LC to be no = 1.47 and ne = 1.58. This analysis assumed the LC spontaneously arranged itself randomly within the PC.
  23. S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, �??Photoaddressable polymers for liquid crystal alignment,�?? Liq. Cryst. 30, 337-344, (2003).
    [CrossRef]
  24. K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, �??Experimental demonstration of a high-quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915-1917, (2003).
    [CrossRef]
  25. The simulated cavity Qs are for PCs with an isotropic ambient refractive index. Simulations involving anisotropic ambient refractive indices that mimic the infiltrated LC (in particular asymmetric cladding/hole layer configurations) yield lower Qs [26].
  26. C. Kim, W. Kim, A. Stapleton, J. Cao, J. O�??Brien, P. Dapkus, �??Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,�?? J. Opt. Soc. Am. B 19, 1777-1781, (2002).
    [CrossRef]
  27. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, �??Low-threshold photonic crystal laser,�?? Appl. Phys. Lett. 81, 2680-2682, (2002).
    [CrossRef]
  28. G. S. Hartley, �??The cis-form of azobenzene,�?? Nature 140, 281 (1937).
    [CrossRef]
  29. B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, �??Large spectral birefringence in photoaddressable polymer films,�?? Adv. Mater. 16, 1746-1750, (2004).
    [CrossRef]
  30. V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, �??Optical anisotropy in films of photoaddressable polymers,�?? Macromolecules 32, 8496-8503, (1999).
    [CrossRef]
  31. Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, �??Photoaddressable polymers for rewritable optical disk systems,�?? Jpn. J. Appl. Phys. 40, 1613-1618, (2001).
    [CrossRef]
  32. M. Eich and J. H. Wendorff, �??Erasable holograms in polymeric liquid crystals,�?? Makromol. Chem., Rapid Commun. 8, 467-471, (1987).
    [CrossRef]

Adv. Mater. (2)

R. Hagen, and T. Bieringer, �??Photoaddressable polymers for optical data storage,�?? Adv. Mater. 13, 1805-1810, (2001).
[CrossRef]

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, �??Large spectral birefringence in photoaddressable polymer films,�?? Adv. Mater. 16, 1746-1750, (2004).
[CrossRef]

Appl. Phys. Lett. (7)

M. Loncar, A. Scherer, and Y. Qiu, �??Photonic crystal laser sources for chemical detection,�?? Appl. Phys. Lett. 82, 4648-4650, (2003).
[CrossRef]

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, �??Liquid-crystal electric tuning of a photonic crystal laser,�?? Appl. Phys. Lett. 85, 360-362, (2004).
[CrossRef]

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, �??Experimental demonstration of a high-quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915-1917, (2003).
[CrossRef]

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, �??Low-threshold photonic crystal laser,�?? Appl. Phys. Lett. 81, 2680-2682, (2002).
[CrossRef]

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, �??Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,�?? Appl. Phys. Lett. 82, 2767-2769, (2003).
[CrossRef]

Y. Shimoda, M. Ozaki, and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? Appl. Phys. Lett. 79, 3627-3629, (2001).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, �??Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,�?? Appl. Phys. Lett. 82, 3593-3595, (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, �??Photoaddressable polymers for rewritable optical disk systems,�?? Jpn. J. Appl. Phys. 40, 1613-1618, (2001).
[CrossRef]

Liq. Cryst. (1)

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, �??Photoaddressable polymers for liquid crystal alignment,�?? Liq. Cryst. 30, 337-344, (2003).
[CrossRef]

Liquid Crystals (1)

J. T. Ho, J. T. �??Light scattering and quasielastic spectroscopy,�?? in Liquid Crystals, S. Kumar, ed. (Cambridge University Press, Cambridge UK, 2001), pp. 197-239.

Macromolecules (1)

V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, �??Optical anisotropy in films of photoaddressable polymers,�?? Macromolecules 32, 8496-8503, (1999).
[CrossRef]

Makromol. Chem., Rapid Commun. (1)

M. Eich and J. H. Wendorff, �??Erasable holograms in polymeric liquid crystals,�?? Makromol. Chem., Rapid Commun. 8, 467-471, (1987).
[CrossRef]

Nanotechnology (1)

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, �??Feasibility of detecting single atoms using photonic bandgap cavities,�?? Nanotechnology 15, S556-S561, (2004).
[CrossRef]

Nature (5)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, �??Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,�?? Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944-947, (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610, (2000).
[CrossRef] [PubMed]

E. Yablonovitch, �??Liquid versus photonic crystals,�?? Nature 401, 539-541, (1999).
[CrossRef]

G. S. Hartley, �??The cis-form of azobenzene,�?? Nature 140, 281 (1937).
[CrossRef]

Phys. Rev. B (1)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, �??Tunable two-dimensional photonic crystals using liquid-crystal infiltration,�?? Phys. Rev. B 61, R2389-R2392, (2000).
[CrossRef]

Phys. Rev. E (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65, 016608-1-11, (2002).

Phys. Rev. Lett. (4)

K. Busch, and S. John, �??Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967-970, (1999).
[CrossRef]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, �??Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,�?? Phys. Rev. Lett. 86, 4052-4055, (2001).
[CrossRef] [PubMed]

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062, (1987).
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489, (1987).
[CrossRef] [PubMed]

Science (3)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821, (1999).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, �??Deterministic coupling of single quantum dots to single nanocavity modes,�?? Science 308, 1158-1161, (2005).
[CrossRef] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, �??Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,�?? Science 308, 1296-1298, (2005).
[CrossRef] [PubMed]

Other (2)

The simulated cavity Qs are for PCs with an isotropic ambient refractive index. Simulations involving anisotropic ambient refractive indices that mimic the infiltrated LC (in particular asymmetric cladding/hole layer configurations) yield lower Qs [26].

By infiltrating the lasers with refractive index calibrated fluids and comparing the lasing redshift with that of the LC infiltrated lasers, we estimated the IR refractive indices of the LC to be no = 1.47 and ne = 1.58. This analysis assumed the LC spontaneously arranged itself randomly within the PC.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning electron micrograph of a fabricated 2D PC laser. The periodicity of holes is 450 nm. The inset shows a close up of the cavity geometry taken with a sample tilted 15°. Scale bar, 2 µm. Inset scale bar, 1 µm.

Fig. 2.
Fig. 2.

Photonic crystal cavity modes and simulated Qs. Finite-difference time-domain simulation of Z component of magnetic field for a, X-polarized and b, Y-polarized modes. c, Simulated Q for X and Y-polarized cavity modes as a function of the ambient refractive index. Although the X-polarized mode has a Q significantly below that of the Y-polarized mode in air, both possess comparable Qs above 4000 even at an ambient refractive index of n ~1.5 [25]. Shaded region denotes ambient refractive index accessible by the infiltrated LC [22].

Fig. 3.
Fig. 3.

Schematics of LC cell, optical setup, and PAP/LC photoinduced alignment. a, Schematic of PC laser LC/PAP cell. Thickness of LC and PAP films are approximately 5 µm, and 31±1 nm, respectively. Top coverslip is not shown. b, Schematic of PC laser optical characterization setup. c, Schematic representation of the LC reorientation via PAP photoinduced alignment. The PAP orients itself orthogonally (along X axis) with respect to the writing laser polarization direction (Y axis) which in turn induces a similar alignment in the LC.

Fig. 4.
Fig. 4.

Confirmation of orthogonally polarized lasing modes. a, The laser spectra is taken with PAP/LC aligned with the Y axis and the collected light is passed through a polarizer oriented at various angles. The collected power is maximized with the polarizer oriented at 0° (X axis) and minimized at 90° (Y axis) which indicates the resonance is the X-polarized dipole mode. b, The laser spectra is taken with the same conditions as in a but with the PAP/LC aligned with the X axis. The collected power is maximized with the polarizer oriented at 90° (Y axis) and minimized at 0° (X axis) which indicates the resonance is the Y-polarized dipole mode. Insets a and b show simulation of cavity modes’ polarization profile. The spectra in parts a and b are normalized to the same power.

Fig. 5.
Fig. 5.

Exp erimental realization of Q-switching. The laser spectra is taken after PAP writing laser aligns the PAP/LC at several orientations. After writing at 0° (PAP writing laser polarized along X axis which causes PAP/LC to orient along Y axis), emission is maximized for the X-polarized mode and minimized for the Y-polarized mode. As the PAP writing laser polarization is rotated towards 90°, the cladding refractive index for the X mode increases, raising losses until the lasing is quenched and emission terminates. Meanwhile, the Y mode experiences a decreasing refractive index, lowering cavity losses and driving the mode above threshold and lases.

Metrics