Abstract

An optically triggered liquid crystal infiltrated Q-switched photonic crystal laser is demonstrated. A photonic crystal laser cavity was designed and fabricated to support two orthogonally polarized high-Q cavity modes after liquid crystal infiltration. By controlling the liquid crystal orientation via a layer of photoaddressable polymer and a writing laser, the photonic crystal lasing mode can be reversibly switched between the two modes which also switches the laser’s emission polarization and wavelength. The creation of the Q-switched laser demonstrates the benefits of customizing photonic crystal cavities to maximally synergize with an infiltrated material and illustrates the potential of integrating semiconductor nanophotonics with optical materials.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062, (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489, (1987).
    [Crossref] [PubMed]
  3. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947, (2003).
    [Crossref] [PubMed]
  4. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610, (2000).
    [Crossref] [PubMed]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
    [Crossref] [PubMed]
  6. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608-1–11, (2002).
  7. B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities,” Nanotechnology 15, S556–S561, (2004).
    [Crossref]
  8. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298, (2005).
    [Crossref] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
    [Crossref] [PubMed]
  10. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
    [Crossref] [PubMed]
  11. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970, (1999).
    [Crossref]
  12. E. Yablonovitch, “Liquid versus photonic crystals,” Nature 401, 539–541, (1999).
    [Crossref]
  13. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
    [Crossref]
  14. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769, (2003).
    [Crossref]
  15. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055, (2001).
    [Crossref] [PubMed]
  16. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629, (2001).
    [Crossref]
  17. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595, (2003).
    [Crossref]
  18. R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13, 1805–1810, (2001).
    [Crossref]
  19. M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650, (2003).
    [Crossref]
  20. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
    [Crossref]
  21. J. T. Ho and J. T. “Light scattering and quasielastic spectroscopy,” in Liquid Crystals, S. Kumar, ed. (Cambridge University Press, Cambridge UK, 2001), pp. 197–239.
  22. By infiltrating the lasers with refractive index calibrated fluids and comparing the lasing redshift with that of the LC infiltrated lasers, we estimated the IR refractive indices of the LC to be no=1.47 and ne=1.58. This analysis assumed the LC spontaneously arranged itself randomly within the PC.
  23. S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
    [Crossref]
  24. K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
    [Crossref]
  25. The simulated cavity Qs are for PCs with an isotropic ambient refractive index. Simulations involving anisotropic ambient refractive indices that mimic the infiltrated LC (in particular asymmetric cladding/hole layer configurations) yield lower Qs [26].
  26. C. Kim, W. Kim, A. Stapleton, J. Cao, J. O’Brien, and P. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19, 1777–1781, (2002).
    [Crossref]
  27. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682, (2002).
    [Crossref]
  28. G. S. Hartley, “The cis-form of azobenzene,” Nature 140, 281 (1937).
    [Crossref]
  29. B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
    [Crossref]
  30. V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, “Optical anisotropy in films of photoaddressable polymers,” Macromolecules 32, 8496–8503, (1999).
    [Crossref]
  31. Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
    [Crossref]
  32. M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid Commun. 8, 467–471, (1987).
    [Crossref]

2005 (2)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298, (2005).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

2004 (4)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities,” Nanotechnology 15, S556–S561, (2004).
[Crossref]

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

2003 (6)

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
[Crossref]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947, (2003).
[Crossref] [PubMed]

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769, (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595, (2003).
[Crossref]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650, (2003).
[Crossref]

2002 (3)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608-1–11, (2002).

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682, (2002).
[Crossref]

C. Kim, W. Kim, A. Stapleton, J. Cao, J. O’Brien, and P. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19, 1777–1781, (2002).
[Crossref]

2001 (4)

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13, 1805–1810, (2001).
[Crossref]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055, (2001).
[Crossref] [PubMed]

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629, (2001).
[Crossref]

2000 (2)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610, (2000).
[Crossref] [PubMed]

1999 (4)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970, (1999).
[Crossref]

E. Yablonovitch, “Liquid versus photonic crystals,” Nature 401, 539–541, (1999).
[Crossref]

V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, “Optical anisotropy in films of photoaddressable polymers,” Macromolecules 32, 8496–8503, (1999).
[Crossref]

1987 (3)

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid Commun. 8, 467–471, (1987).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062, (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489, (1987).
[Crossref] [PubMed]

1937 (1)

G. S. Hartley, “The cis-form of azobenzene,” Nature 140, 281 (1937).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947, (2003).
[Crossref] [PubMed]

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298, (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947, (2003).
[Crossref] [PubMed]

Atature, M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

Atwater, H.

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

Badolato, A.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

Baehr-Jones, T.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

Barclay, P.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities,” Nanotechnology 15, S556–S561, (2004).
[Crossref]

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
[Crossref]

Baughman, R. H.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055, (2001).
[Crossref] [PubMed]

Berneth, H.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

Bieringer, T.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13, 1805–1810, (2001).
[Crossref]

V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, “Optical anisotropy in films of photoaddressable polymers,” Macromolecules 32, 8496–8503, (1999).
[Crossref]

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

Busch, K.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970, (1999).
[Crossref]

Cao, J.

Chen, J.

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
[Crossref]

Cho, A.

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
[Crossref]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610, (2000).
[Crossref] [PubMed]

Cimrová, V.

V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, “Optical anisotropy in films of photoaddressable polymers,” Macromolecules 32, 8496–8503, (1999).
[Crossref]

Clark, N. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055, (2001).
[Crossref] [PubMed]

Dapkus, P.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

Dood, M.

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

Eich, M.

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid Commun. 8, 467–471, (1987).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

Forchel, A.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769, (2003).
[Crossref]

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298, (2005).
[Crossref] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

Gmachl, C.

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
[Crossref]

Gogna, P.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682, (2002).
[Crossref]

Gosele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

Haarer, D.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

Hagen, R.

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13, 1805–1810, (2001).
[Crossref]

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

Hartley, G. S.

G. S. Hartley, “The cis-form of azobenzene,” Nature 140, 281 (1937).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

Hennessy, K.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

Ho, J. T.

J. T. Ho and J. T. “Light scattering and quasielastic spectroscopy,” in Liquid Crystals, S. Kumar, ed. (Cambridge University Press, Cambridge UK, 2001), pp. 197–239.

Hochberg, M.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

Hu, E.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610, (2000).
[Crossref] [PubMed]

Imamoglu, A.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

J. T.,

J. T. Ho and J. T. “Light scattering and quasielastic spectroscopy,” in Liquid Crystals, S. Kumar, ed. (Cambridge University Press, Cambridge UK, 2001), pp. 197–239.

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970, (1999).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489, (1987).
[Crossref] [PubMed]

Kamp, M.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769, (2003).
[Crossref]

Kang, D.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055, (2001).
[Crossref] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

Kim, C.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

Kim, W.

Klopf, F.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769, (2003).
[Crossref]

Kostromine, S.

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, “Optical anisotropy in films of photoaddressable polymers,” Macromolecules 32, 8496–8503, (1999).
[Crossref]

Lachut, B.

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

Leonard, S. W.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

Lev, B.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities,” Nanotechnology 15, S556–S561, (2004).
[Crossref]

Loncar, M.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650, (2003).
[Crossref]

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682, (2002).
[Crossref]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608-1–11, (2002).

Lucht, S.

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

Mabuchi, H.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities,” Nanotechnology 15, S556–S561, (2004).
[Crossref]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608-1–11, (2002).

Maclennan, J. E.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055, (2001).
[Crossref] [PubMed]

Maier, S.

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595, (2003).
[Crossref]

Maune, B.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

Miteva, T.

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

Mondia, J. P.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

Neher, D.

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, “Optical anisotropy in films of photoaddressable polymers,” Macromolecules 32, 8496–8503, (1999).
[Crossref]

Nelles, G.

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

Noda, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298, (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947, (2003).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610, (2000).
[Crossref] [PubMed]

O’Brien, J.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

Ozaki, M.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595, (2003).
[Crossref]

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629, (2001).
[Crossref]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595, (2003).
[Crossref]

Painter, O.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities,” Nanotechnology 15, S556–S561, (2004).
[Crossref]

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

Petroff, P.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

Polman, A.

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

Psaltis, D.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

Qiu, Y.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650, (2003).
[Crossref]

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682, (2002).
[Crossref]

Reithmaier, J. P.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769, (2003).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

Sabi, Y.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

Scherer, A.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650, (2003).
[Crossref]

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682, (2002).
[Crossref]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608-1–11, (2002).

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

Schuller, C.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769, (2003).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

Shimoda, Y.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629, (2001).
[Crossref]

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947, (2003).
[Crossref] [PubMed]

Srinivasan, K.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities,” Nanotechnology 15, S556–S561, (2004).
[Crossref]

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
[Crossref]

Stapleton, A.

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298, (2005).
[Crossref] [PubMed]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298, (2005).
[Crossref] [PubMed]

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

van Driel, H. M.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

Vuckovic, J.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608-1–11, (2002).

Watanabe, H.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

Wendorff, J. H.

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid Commun. 8, 467–471, (1987).
[Crossref]

Witzens, J.

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Liquid versus photonic crystals,” Nature 401, 539–541, (1999).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062, (1987).
[Crossref] [PubMed]

Yamamoto, M.

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

Yasuda, A.

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682, (2002).
[Crossref]

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595, (2003).
[Crossref]

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629, (2001).
[Crossref]

Zakhidov, A. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055, (2001).
[Crossref] [PubMed]

Adv. Mater. (2)

R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13, 1805–1810, (2001).
[Crossref]

B. Lachut, S. Maier, H. Atwater, M. Dood, A. Polman, R. Hagen, and S. Kostromine, “Large spectral birefringence in photoaddressable polymer films,” Adv. Mater. 16, 1746–1750, (2004).
[Crossref]

Appl. Phys. Lett. (7)

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682, (2002).
[Crossref]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650, (2003).
[Crossref]

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362, (2004).
[Crossref]

K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, “Experimental demonstration of a high-quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917, (2003).
[Crossref]

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769, (2003).
[Crossref]

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629, (2001).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595, (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disk systems,” Jpn. J. Appl. Phys. 40, 1613–1618, (2001).
[Crossref]

Liq. Cryst. (1)

S. Lucht, D. Neher, T. Miteva, G. Nelles, A. Yasuda, R. Hagen, and S. Kostromine, “Photoaddressable polymers for liquid crystal alignment,” Liq. Cryst. 30, 337–344, (2003).
[Crossref]

Macromolecules (1)

V. Cimrová, D. Neher, S. Kostromine, and T. Bieringer, “Optical anisotropy in films of photoaddressable polymers,” Macromolecules 32, 8496–8503, (1999).
[Crossref]

Makromol. Chem., Rapid Commun. (1)

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid Commun. 8, 467–471, (1987).
[Crossref]

Nanotechnology (1)

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities,” Nanotechnology 15, S556–S561, (2004).
[Crossref]

Nature (5)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203, (2004).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947, (2003).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610, (2000).
[Crossref] [PubMed]

E. Yablonovitch, “Liquid versus photonic crystals,” Nature 401, 539–541, (1999).
[Crossref]

G. S. Hartley, “The cis-form of azobenzene,” Nature 140, 281 (1937).
[Crossref]

Phys. Rev. B (1)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392, (2000).
[Crossref]

Phys. Rev. E (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608-1–11, (2002).

Phys. Rev. Lett. (4)

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970, (1999).
[Crossref]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055, (2001).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062, (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489, (1987).
[Crossref] [PubMed]

Science (3)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science,  284, 1819–1821, (1999).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161, (2005).
[Crossref] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298, (2005).
[Crossref] [PubMed]

Other (3)

The simulated cavity Qs are for PCs with an isotropic ambient refractive index. Simulations involving anisotropic ambient refractive indices that mimic the infiltrated LC (in particular asymmetric cladding/hole layer configurations) yield lower Qs [26].

J. T. Ho and J. T. “Light scattering and quasielastic spectroscopy,” in Liquid Crystals, S. Kumar, ed. (Cambridge University Press, Cambridge UK, 2001), pp. 197–239.

By infiltrating the lasers with refractive index calibrated fluids and comparing the lasing redshift with that of the LC infiltrated lasers, we estimated the IR refractive indices of the LC to be no=1.47 and ne=1.58. This analysis assumed the LC spontaneously arranged itself randomly within the PC.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning electron micrograph of a fabricated 2D PC laser. The periodicity of holes is 450 nm. The inset shows a close up of the cavity geometry taken with a sample tilted 15°. Scale bar, 2 µm. Inset scale bar, 1 µm.

Fig. 2.
Fig. 2.

Photonic crystal cavity modes and simulated Qs. Finite-difference time-domain simulation of Z component of magnetic field for a, X-polarized and b, Y-polarized modes. c, Simulated Q for X and Y-polarized cavity modes as a function of the ambient refractive index. Although the X-polarized mode has a Q significantly below that of the Y-polarized mode in air, both possess comparable Qs above 4000 even at an ambient refractive index of n ~1.5 [25]. Shaded region denotes ambient refractive index accessible by the infiltrated LC [22].

Fig. 3.
Fig. 3.

Schematics of LC cell, optical setup, and PAP/LC photoinduced alignment. a, Schematic of PC laser LC/PAP cell. Thickness of LC and PAP films are approximately 5 µm, and 31±1 nm, respectively. Top coverslip is not shown. b, Schematic of PC laser optical characterization setup. c, Schematic representation of the LC reorientation via PAP photoinduced alignment. The PAP orients itself orthogonally (along X axis) with respect to the writing laser polarization direction (Y axis) which in turn induces a similar alignment in the LC.

Fig. 4.
Fig. 4.

Confirmation of orthogonally polarized lasing modes. a, The laser spectra is taken with PAP/LC aligned with the Y axis and the collected light is passed through a polarizer oriented at various angles. The collected power is maximized with the polarizer oriented at 0° (X axis) and minimized at 90° (Y axis) which indicates the resonance is the X-polarized dipole mode. b, The laser spectra is taken with the same conditions as in a but with the PAP/LC aligned with the X axis. The collected power is maximized with the polarizer oriented at 90° (Y axis) and minimized at 0° (X axis) which indicates the resonance is the Y-polarized dipole mode. Insets a and b show simulation of cavity modes’ polarization profile. The spectra in parts a and b are normalized to the same power.

Fig. 5.
Fig. 5.

Exp erimental realization of Q-switching. The laser spectra is taken after PAP writing laser aligns the PAP/LC at several orientations. After writing at 0° (PAP writing laser polarized along X axis which causes PAP/LC to orient along Y axis), emission is maximized for the X-polarized mode and minimized for the Y-polarized mode. As the PAP writing laser polarization is rotated towards 90°, the cladding refractive index for the X mode increases, raising losses until the lasing is quenched and emission terminates. Meanwhile, the Y mode experiences a decreasing refractive index, lowering cavity losses and driving the mode above threshold and lases.

Metrics