Abstract

We present a new common path configuration Fourier domain low coherence interferometry (fLCI) optical system and demonstrate its capabilities by presenting results which determine the size of cell nuclei in a monolayer of T84 epithelial cells. The optical system uses a white light source in a modified Michelson interferometer and a spectrograph for detection of the mixed signal and reference fields. Depth resolution is obtained from the Fourier transform of the measured spectrum which provides the axial spatial cross-correlation between the signal and reference fields. The spectral dependence of scattering by the samples is determined by windowing the spectrum to measure the scattering amplitude as a function of wavenumber. We present evidence that fLCI accurately measures the longitudinal profile of cell nuclei rather than the transverse profile.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C.W. Boone, R.R. Dasari, and M.S. Feld, "Measuring cellular structure at submicrometer scale with light scattering spectroscopy," IEEE. J. Sel. Top. Quantum Electron. 7, 887-893 (2001).
    [CrossRef]
  2. A. Wax, C.H. Yang, V. Backman, K. Badizadegan, C.W. Boone, R.R. Dasari, and M.S. Feld, "Cell organization and sub-structure measured using angle-resolved low coherence interferometry," Biophys. J. 82, 2256-2264 (2002).
    [CrossRef] [PubMed]
  3. V. Backman, M.B. Wallace, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J.M. Crawford, M. Fitzmaurice, S. Kabani, H.S. Levin, M. Seiler, R.R. Dasari, I. Itzkan, J. Van Dam, and M.S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000).
    [CrossRef] [PubMed]
  4. A. Wax, C.H. Yang, M.G. Muller, R. Nines, C.W. Boone, V.E. Steele, G.D. Stoner, R.R. Dasari, and M.S. Feld, "In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry," Cancer Research 63, 3556-3559 (2003).
    [PubMed]
  5. A. Wax, J.W. Pyhtila, R.N. Graf, R. Nines, C.W. Boone, R.R. Dasari, M.S. Feld, V.E. Steele, and G.D. Stoner, " Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low coherence interferometry" J. Biomed. Opt. in press
  6. A. Wax, C.H. Yang, R.R. Dasari, and M.S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Optics Letters 26, 322-324 (2001).
    [CrossRef]
  7. A. Wax, C.H. Yang, V. Backman, M. Kalashnikov, R.R. Dasari, and M.S. Feld, "Determination of particle size using the angular distribution of backscattered light as measured with low-coherence interferometry," J. Opt. Soc. Am. A 19, 737-744 (2002).
    [CrossRef]
  8. A. Wax, C.H. Yang, and J.A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28, 1230-1232 (2003).
    [CrossRef] [PubMed]
  9. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A.F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  11. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C.K. Hitzenberger, M. Sticker, and A.F. Fercher, "Spectral measurement of absorption by spectroscopic frequency- domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  12. U. Morgner, W. Drexler, F.X. Krtner, X.D. Li, C. Pitris, E.P. Ippen, J.G. Fujimoto, �??Spectroscopic optical coherence tomography,�?? Opt. Lett. 25, 111-113 (2000).
    [CrossRef]
  13. V. Tuchin, �??Tissue optics: light scattering methods and instruments for medical diagnosis,�?? SPIE (2000).

Biophys. J. (1)

A. Wax, C.H. Yang, V. Backman, K. Badizadegan, C.W. Boone, R.R. Dasari, and M.S. Feld, "Cell organization and sub-structure measured using angle-resolved low coherence interferometry," Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

Cancer Research (1)

A. Wax, C.H. Yang, M.G. Muller, R. Nines, C.W. Boone, V.E. Steele, G.D. Stoner, R.R. Dasari, and M.S. Feld, "In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry," Cancer Research 63, 3556-3559 (2003).
[PubMed]

IEEE. J. Sel. Top. Quantum Electron. (1)

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C.W. Boone, R.R. Dasari, and M.S. Feld, "Measuring cellular structure at submicrometer scale with light scattering spectroscopy," IEEE. J. Sel. Top. Quantum Electron. 7, 887-893 (2001).
[CrossRef]

J. Biomed. Opt. (2)

A. Wax, J.W. Pyhtila, R.N. Graf, R. Nines, C.W. Boone, R.R. Dasari, M.S. Feld, V.E. Steele, and G.D. Stoner, " Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low coherence interferometry" J. Biomed. Opt. in press

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nature (1)

V. Backman, M.B. Wallace, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J.M. Crawford, M. Fitzmaurice, S. Kabani, H.S. Levin, M. Seiler, R.R. Dasari, I. Itzkan, J. Van Dam, and M.S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000).
[CrossRef] [PubMed]

Opt. Lett. (4)

Optics Letters (1)

A. Wax, C.H. Yang, R.R. Dasari, and M.S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Optics Letters 26, 322-324 (2001).
[CrossRef]

SPIE (1)

V. Tuchin, �??Tissue optics: light scattering methods and instruments for medical diagnosis,�?? SPIE (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Schematic of new fLCI system. (b). Measurement geometry for the in vitro cell experiments.

Fig. 2.
Fig. 2.

(a). Typical spectrum of light scattered by the in vitro cell sample. (b). Contour plot showing the depth resolved spectral data for the T84 cell sample.

Fig. 3.
Fig. 3.

(a). Scattering efficiency of the T84 cells. (b). Correlation function obtained by Fourier transforming ratioed data shown in (a).

Fig. 4.
Fig. 4.

(a) Fluorescence microscopy image of T84 cell nuclei. (b) Confocal microscopy Z-stack of T84 nuclei.

Fig. 5.
Fig. 5.

(a). Illustration of the difference between the longitudinal and transverse profiles of the cells. (b). Confocal microscopy image of T84 cell nuclei demonstrating the different horizontal and vertical nuclear dimensions.

Tables (1)

Tables Icon

Table 1. Mean Diameter and Standard Deviation Measurements

Metrics