Abstract

An experimental investigation of long-ranging surface plasmon-polariton waves guided along Bragg gratings fabricated from a thin finite width Au film embedded in a homogeneous background dielectric is reported. The operation of four grating families is demonstrated near the free space optical wavelength of 1550 nm. The influence of the length of the grating and the depth of effective index modulation on the performance of these elements is presented and discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Berini, �??Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,�?? Phys. Rev. B 61, 10484-10503, (2000).
    [CrossRef]
  2. S. Jetté, �??A study of Bragg gratings based on plasmon-polariton waveguides,�?? M.A.Sc Thesis, University of Ottawa, Ottawa, Canada (2003).
  3. R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, �??Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,�?? Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  4. R. Nikolajsen, K. Leosson, I. Salakhutdinov and S.I. Bozhevolnyi, �??Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,�?? Appl. Phys. Lett, 82, 668-670 (2003).
    [CrossRef]
  5. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, �??Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,�?? Opt. Express 13, 977-984 (2005).
    [CrossRef] [PubMed]
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, �??Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,�?? J. Light. Technol. 23, 413-422 (2005).
    [CrossRef]
  7. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, �??Single-mode surface-plasmon laser,�?? Appl. Phys. Lett. 76, 2164-2166 (2000).
    [CrossRef]
  8. M. L. Osowski, R. Panepucci, I. Adesida, and J. J. Coleman, �??A strained-layer InGaAs-GaAs asymmetric cladding gain-coupled DFB laser with titanium surface gratings by metalorganic chemical vapour deposition,�?? IEEE Photonics Technol. Lett. 9, 422-424 (1997).
    [CrossRef]
  9. J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González and A.-L. Baudrion, �??Near-field characterisation of Bragg mirrors engraved in surface plasmon waveguides,�?? Phys. Rev. B. 70 235406 (2004).
    [CrossRef]
  10. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, �??Waveguiding in surface plasmon polariton band gap structures,�?? Phys. Rev. Lett. 86 3008 (2001).
    [CrossRef] [PubMed]
  11. H. Raether, �??Surface plasmons on smooth and rough surfaces and on gratings,�?? (Springer-Verlag, 1988).
  12. I. R. Hooper and J. R. Sambles, �??Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,�?? Phys. Rev. B 70 045421 (2004).
    [CrossRef]
  13. J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, �??Propagation of surface plasmon polaritons on semiconductor gratings,�?? Phys. Rev. Lett. 93 256804 (2004).
    [CrossRef]
  14. E.D. Palik (Ed.), �??Handbook of Optical Constants of Solids,�?? (Academic Press, 1985).

Appl. Phys. Lett, (1)

R. Nikolajsen, K. Leosson, I. Salakhutdinov and S.I. Bozhevolnyi, �??Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,�?? Appl. Phys. Lett, 82, 668-670 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, �??Single-mode surface-plasmon laser,�?? Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. L. Osowski, R. Panepucci, I. Adesida, and J. J. Coleman, �??A strained-layer InGaAs-GaAs asymmetric cladding gain-coupled DFB laser with titanium surface gratings by metalorganic chemical vapour deposition,�?? IEEE Photonics Technol. Lett. 9, 422-424 (1997).
[CrossRef]

J. Light. Technol. (1)

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, �??Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,�?? J. Light. Technol. 23, 413-422 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

I. R. Hooper and J. R. Sambles, �??Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,�?? Phys. Rev. B 70 045421 (2004).
[CrossRef]

P. Berini, �??Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,�?? Phys. Rev. B 61, 10484-10503, (2000).
[CrossRef]

Phys. Rev. B. (1)

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González and A.-L. Baudrion, �??Near-field characterisation of Bragg mirrors engraved in surface plasmon waveguides,�?? Phys. Rev. B. 70 235406 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, �??Waveguiding in surface plasmon polariton band gap structures,�?? Phys. Rev. Lett. 86 3008 (2001).
[CrossRef] [PubMed]

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, �??Propagation of surface plasmon polaritons on semiconductor gratings,�?? Phys. Rev. Lett. 93 256804 (2004).
[CrossRef]

Other (3)

E.D. Palik (Ed.), �??Handbook of Optical Constants of Solids,�?? (Academic Press, 1985).

S. Jetté, �??A study of Bragg gratings based on plasmon-polariton waveguides,�?? M.A.Sc Thesis, University of Ottawa, Ottawa, Canada (2003).

H. Raether, �??Surface plasmons on smooth and rough surfaces and on gratings,�?? (Springer-Verlag, 1988).

Supplementary Material (2)

» Media 1: AVI (352 KB)     
» Media 2: AVI (366 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Top view of the metal pattern of a generic grating (background dielectric not shown): (a) metal - gap; (b) step-in-width; (c) definition of unit cell.

Fig. 2.
Fig. 2.

Experimental set-up; (a) fibre-die coupling arrangement; (b) measurement set-up.

Fig. 3.
Fig. 3.

Spectral response of C8g metal-gap gratings; (a) transmittance and (b) reflectance.

Fig. 4.
Fig. 4.

Output mode images versus wavelength for a C8g metal-gap grating of length 5 mm; the first image is taken at the short wavelength end of the range (Video clip size: 352 kB).

Fig. 5.
Fig. 5.

Spectral response of C83 step-in-width gratings; (a) transmittance and (b) reflectance.

Fig. 6.
Fig. 6.

Output mode images versus wavelength for a C83 step-in-width grating of length 5 mm; the first image is taken at the short wavelength end of the range (Video clip size: 366 kB).

Fig. 7.
Fig. 7.

Summary of grating reflectance versus grating length for various architectures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n ave Λ N

Metrics