Abstract

The gain spectrum of a fiber optical parametric amplifier (OPA) can be controlled by imposing a temperature distribution along the fiber, which modulates the local fiber zero-dispersion wavelength λ 0, and hence the parametric gain coefficient. We present simulations and experimental verification for various binary temperature distributions. The method should be applicable to fibers with realistic longitudinal variations of λ 0.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, �??Broadband fiber optical parametric amplifiers,�?? Opt. Lett. 21, 573-575 (1996).
    [CrossRef] [PubMed]
  2. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, �??Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,�?? Opt. Lett. 21, 1354-1356 (1996).
    [CrossRef] [PubMed]
  3. K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, �??Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibers,�?? IEE Electron. Lett. 28, 1712-1714 (1992).
    [CrossRef]
  4. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, �??Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,�?? J. Lightwave Technol. 19, 1691-1697 (2001).
    [CrossRef]
  5. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky., �??Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,�?? IEEE J. Sel. Top. Quantum. Electron. 10, 1133-1141, (2004).
    [CrossRef]
  6. M. E. Marhic, F. S. Yang, M. C. Ho, and L. G. Kazovsky, �??High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation,�?? IEEE J. Lightwave Technol. 17, 210-215 (1999).
    [CrossRef]
  7. OptSim, distributed by RSoft <a href=�??http://www.rsoftdesign.com�??>(http://www.rsoftdesign.com)</a>. A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, �??Time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effects in fiber,�?? IEEE J. Sel. Areas Commun. 15, 751-765 (1997).
    [CrossRef]
  8. A. Mussot, E. Lantz, T. Sylvestre, H. Maillotte, A. Durecu-Legrand, C. Simonneau, and D. Bayart, �??Zerodispersion wavelength mapping of a highly nonlinear optical fibre-based parametric amplifier,�?? 30th European Conference on Optical Communication. ECOC 2004, 5-9 Sept. 2004, Stockholm, Sweden; p.190-1 vol.2
  9. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, �??Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,�?? J. Opt. Soc. Am. B 20, 1532-1537 (2003).
    [CrossRef]

30th ECOC Conference, 2004 (1)

A. Mussot, E. Lantz, T. Sylvestre, H. Maillotte, A. Durecu-Legrand, C. Simonneau, and D. Bayart, �??Zerodispersion wavelength mapping of a highly nonlinear optical fibre-based parametric amplifier,�?? 30th European Conference on Optical Communication. ECOC 2004, 5-9 Sept. 2004, Stockholm, Sweden; p.190-1 vol.2

IEEE J. Lightwave Technol. (1)

M. E. Marhic, F. S. Yang, M. C. Ho, and L. G. Kazovsky, �??High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation,�?? IEEE J. Lightwave Technol. 17, 210-215 (1999).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

OptSim, distributed by RSoft <a href=�??http://www.rsoftdesign.com�??>(http://www.rsoftdesign.com)</a>. A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, �??Time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effects in fiber,�?? IEEE J. Sel. Areas Commun. 15, 751-765 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky., �??Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,�?? IEEE J. Sel. Top. Quantum. Electron. 10, 1133-1141, (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, �??Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibers,�?? IEE Electron. Lett. 28, 1712-1714 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulated OPA gain spectra for: Np =1 (a); Np =2 (b), Np =4 (c), Np =32 (d). The display resolution is 2 nm. Raman gain is not included. Note the change of vertical scale for Fig. 1(d).

Fig. 2.
Fig. 2.

Experimental setup. TLS: Tunable laser source. PC: Polarization controller. VOA: variable optical attenuator. TBF: Tunable bandpass filter. MZ-IM: Mach-Zehnder intensity modulator. OSA: Optical spectrum analyzer. ISO: Isolator.

Fig. 3.
Fig. 3.

Two different configurations for temperature control of the DSF. (a) Single 200-m spool with diameter fraction “y” submerged in ice water; (b) two spools (100 m each) respectively maintained at 0°C (upper) and 25°C (lower).

Fig. 4.
Fig. 4.

(a) Experimental ASE spectrum of temperature-controlled OPA with different fractions of the diameter (marked as “y”) submerged in ice water. The peak wavelength changes from 1462.98 nm to 1472.99 nm as y increases from 0 to 2/3. The optical resolution was 2 nm. (b) Simulated gain spectra, corresponding to the conditions of Fig. 4(a).

Fig. 5.
Fig. 5.

(a) Experimental ASE spectra of temperature-controlled OPA with two 100-m spools of DSF. λp =1540.43 nm. (b) Simulated gain spectra, corresponding to the conditions of Fig. 5(a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ β ( z ) β 2 ( z ) ( Δ ω s ) 2 + β 4 12 ( Δ ω s ) 4
2 π c β 3 ( 1 λ p 1 λ 0 ( z ) ) ( Δ ω s ) 2 + β 4 12 ( Δ ω s ) 4
Δ β = 2 π c β 3 ( 1 λ p 1 λ 0 ) ( Δ ω s ) 2 + β 4 12 ( Δ ω s ) 4 = 0 ,
( Δ ω sb ) 2 = 24 π c β 3 β 4 ( 1 λ p 1 λ 0 ) .

Metrics