Abstract

A novel modulator design incorporating an E-O polymer into a resonant grating waveguide structure is presented. Using purely polymeric material we developed a resonant grating waveguide structure having low loss and high finesse, with approximately 2nm spectral line width at 1.55µm. An externally applied voltage modulates the refractive index of the E-O waveguide, thereby shifting the resonance wavelength and modulating the incident light at MHz rates. Such modulator operates in free space and does not involve waveguide patterning nor the need for facet conditioning and coupling common to operation in the Mach-Zehnder type configuration.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Lee, �??Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147GHz,�?? Appl. Phys. Lett. 79, 1342�??1344 (2001).
    [CrossRef]
  2. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson and W. H. Streir, �??Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,�?? Science 288, 199�??122 (2000).
    [CrossRef]
  3. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber and D. J. McGee, �??Broadband modulation of light by using an electro-optic polymer,�?? Science 298, 1401�??1403 (2002).
    [CrossRef] [PubMed]
  4. R. W. Wood, �??On a remarkable case of uneven distribution of light in a diffraction grating spectrum,�?? Philos. Mag. 4, 396�??402 (1902).
  5. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  6. T. Tamir and S. Zhang, �??Resonant scattering by multilayered dielectric gratings,�?? J. Opt. Soc. Am. A 14, 1607�??1616 (1997).
    [CrossRef]
  7. I. A. Avrutskii, G. A. Golubenko, V. A. Sychugov and A. V. Tischenko, �??Light reflection from the surface of a corrugated waveguide,�?? Sov. Tech. Phys. Lett. 11, 401-402 (1985).
  8. S. S.Wang, R. Magnusson, J. S. Bagby and M. G. Moharam, �??Guided-mode resonances in planar dielectric-layer diffraction gratings,�?? J. Opt. Soc. Am. A 7, 1470�??1474 (1990).
    [CrossRef]
  9. S. Peng and G. M. Morris, �??Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,�?? Opt. Lett. 21, 549-551 (1996).
    [CrossRef] [PubMed]
  10. A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, �??Metal-based resonant grating waveguide structures,�?? J. Opt. Soc. Am. A 14, 588�??595 (1997).
    [CrossRef]
  11. P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, �??Guided mode resonance filters using polymer films,�?? Appl. Phys. Lett. 71, 1008�??1010 (1997).
    [CrossRef]
  12. R. J. Stockermans and P.L. Rochon, �??Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,�?? Appl. Opt. 38, 3714�??3719 (1999).
    [CrossRef]
  13. A. Donval, E. Toussaere, J. Zyss, G. Levy-Yurista, E. Jonsson, A. A. Friesem, �??Novel polymer-based resonant grating waveguide structures,�?? IEEE J. Quantum Electron. 37, 1030�??1039 (2001).
  14. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingueber, �??Light modulation with resonant grating waveguide structures,�?? Opt. Lett. 21, 1564�??1566 (1996).
    [CrossRef] [PubMed]
  15. N. Dudovich, G. Levy-Yurista, A. Sharon, A. A. Friesem, and H. G.Weber, �??Active semiconductor-based grating waveguide structures,�?? IEEE J. Quantum Electron. 37, 1030�??1039 (2001).
    [CrossRef]
  16. A. Donval, E. Toussaere, R. Hierle, J. Zyss, �??Polarization insensitive electro-optic polymer modulator,�?? Appl. Phys. 87, 3258�??3262 (2000).
  17. D. Rosenblatt, A. Sharon and A. A. Friesem, �??Resonant grating waveguide structures,�?? IEEE J. Quantum Electron. 33, 2038�??2059 (1997).
    [CrossRef]
  18. P. Sheng , R. S. Stepleman ans P. N. Sanda, �??Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,�?? Phys. Rev. B 26, 2907�??2917 (1982).
    [CrossRef]

Appl. Opt.

Appl. Phys.

A. Donval, E. Toussaere, R. Hierle, J. Zyss, �??Polarization insensitive electro-optic polymer modulator,�?? Appl. Phys. 87, 3258�??3262 (2000).

Appl. Phys. Lett.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, �??Guided mode resonance filters using polymer films,�?? Appl. Phys. Lett. 71, 1008�??1010 (1997).
[CrossRef]

M. Lee, �??Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147GHz,�?? Appl. Phys. Lett. 79, 1342�??1344 (2001).
[CrossRef]

IEEE J. Quantum Electron.

N. Dudovich, G. Levy-Yurista, A. Sharon, A. A. Friesem, and H. G.Weber, �??Active semiconductor-based grating waveguide structures,�?? IEEE J. Quantum Electron. 37, 1030�??1039 (2001).
[CrossRef]

D. Rosenblatt, A. Sharon and A. A. Friesem, �??Resonant grating waveguide structures,�?? IEEE J. Quantum Electron. 33, 2038�??2059 (1997).
[CrossRef]

A. Donval, E. Toussaere, J. Zyss, G. Levy-Yurista, E. Jonsson, A. A. Friesem, �??Novel polymer-based resonant grating waveguide structures,�?? IEEE J. Quantum Electron. 37, 1030�??1039 (2001).

J. Opt. Soc. Am. A

Opt. Lett.

Philos. Mag.

R. W. Wood, �??On a remarkable case of uneven distribution of light in a diffraction grating spectrum,�?? Philos. Mag. 4, 396�??402 (1902).

Phys. Rev. B

P. Sheng , R. S. Stepleman ans P. N. Sanda, �??Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,�?? Phys. Rev. B 26, 2907�??2917 (1982).
[CrossRef]

Science

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson and W. H. Streir, �??Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,�?? Science 288, 199�??122 (2000).
[CrossRef]

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber and D. J. McGee, �??Broadband modulation of light by using an electro-optic polymer,�?? Science 298, 1401�??1403 (2002).
[CrossRef] [PubMed]

Sov. Tech. Phys. Lett.

I. A. Avrutskii, G. A. Golubenko, V. A. Sychugov and A. V. Tischenko, �??Light reflection from the surface of a corrugated waveguide,�?? Sov. Tech. Phys. Lett. 11, 401-402 (1985).

Other

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Active polymer-based grating waveguide structure with an E-O polymer waveguide.

Fig. 2.
Fig. 2.

SEM images of the grating layer. Inserts showing enhanced images of the grating surface roughness.

Fig. 3.
Fig. 3.

Experimental normalized reflection intensity as a function of wavelength, for a polymer-based GWS.

Fig. 4.
Fig. 4.

Experimental normalized reflection intensity as a function of wavelength, for a polymer-based GWS. (a) Pulse duration of 0.1ms; (b) pulse duration of 1µs. Dashed curve-applied voltage; solid curve- detected reflection modulation at resonance wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n c k sin θ + mK = n w k cos ψ ,
Δ λ λ Δ n n w ,
Δ n = n w , o 3 r 23 Γ V 2 d ,
Δλ = λ n w , o 3 r 23 Γ 2 d V .

Metrics