Abstract

An axially-symmetric sheared polymer network liquid crystal (SPNLC) device is demonstrated and its performances characterized. Through analyzing the structure of this axially-symmetric SPNLC, we constructed a 3-D model to explain the observed phenomena. The simulation results agree well with the experiment. Two potential applications of such an axially-symmetric SPNLC, namely tunable-focus negative lens and spatial polarization converter, are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. H. Lee, H. R. Kim, and S. D. Lee, �??Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,�?? Appl. Phys. Lett. 75, 859-861 (1999).
    [CrossRef]
  2. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, �??Polarization-independent phase modulation using a polymer-dispersed liquid crystal,�?? Appl. Phys. Lett. 86, 141110 (2005).
    [CrossRef]
  3. R. Yamaguchi, T. Nose, and S. Sato, �??Liquid crystal polarizers with axially symmetrical properties,�?? Jpn. J. Appl. Phys. 28, 1730-1731(1989).
    [CrossRef]
  4. M. Stalder and M. Schadt, �??Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,�?? Opt. Lett. 21, 1948-1950 (1996). <a href="http://ol.osa.org/abstract.cfm?id=45260">http://ol.osa.org/abstract.cfm?id=45260</a>.
    [CrossRef] [PubMed]
  5. A. Niv, G. Biener, V. Kleiner, and E. Hasman, �??Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings,�?? Opt. Lett. 28, 510-512 (2003). <a href="http://ol.osa.org/abstract.cfm?id=71638">http://ol.osa.org/abstract.cfm?id=71638</a>.
    [CrossRef] [PubMed]
  6. S. C. Tidwell, D. H. Ford, and W. D. Kimura, �??Generating radially polarized beams interferometrically,�?? Appl. Opt. 29, 2234-2239 (1990). <a href="http://ao.osa.org/abstract.cfm?id=37968">http://ao.osa.org/abstract.cfm?id=37968</a>.
    [CrossRef] [PubMed]
  7. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,�?? Opt. Express 12, 6377-6384 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382</a>.
    [CrossRef]
  8. J. L. West, G. Zhang, and A. Glushchenko, �??Fast birefringent mode stressed liquid crystal,�?? Appl. Phys. Lett. 86, 031111 (2005).
    [CrossRef]
  9. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, �??Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,�?? Appl. Phys. Lett. 84, 1233-1235 (2004).
    [CrossRef]
  10. A. V. Nesterov and V. G. Niziev, �??Laser beams with axially symmetric polarization,�?? Phys. D: Appl. Phys. 33, 1817�??1822 (2000).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. L. West, G. Zhang, and A. Glushchenko, �??Fast birefringent mode stressed liquid crystal,�?? Appl. Phys. Lett. 86, 031111 (2005).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, �??Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,�?? Appl. Phys. Lett. 84, 1233-1235 (2004).
[CrossRef]

J. H. Lee, H. R. Kim, and S. D. Lee, �??Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,�?? Appl. Phys. Lett. 75, 859-861 (1999).
[CrossRef]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, �??Polarization-independent phase modulation using a polymer-dispersed liquid crystal,�?? Appl. Phys. Lett. 86, 141110 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

R. Yamaguchi, T. Nose, and S. Sato, �??Liquid crystal polarizers with axially symmetrical properties,�?? Jpn. J. Appl. Phys. 28, 1730-1731(1989).
[CrossRef]

Opt. Express

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu and S. T. Wu, "Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,�?? Opt. Express 12, 6377-6384 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382</a>.
[CrossRef]

Opt. Lett.

Phys. D: Appl. Phys.

A. V. Nesterov and V. G. Niziev, �??Laser beams with axially symmetric polarization,�?? Phys. D: Appl. Phys. 33, 1817�??1822 (2000).
[CrossRef]

Supplementary Material (2)

» Media 1: MPG (492 KB)     
» Media 2: MPG (443 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

SPNLC structure observed under crossed polarizers.

Fig. 2.
Fig. 2.

Voltage-dependent transmittance of the axially symmetric SPNLC cell. d=9 µm and λ=633 nm.

Fig. 3.
Fig. 3.

Optical response time of the 9-µm axially-symmetric SPNLC: (a) rise time, and (b) decay time.

Fig. 4.
Fig. 4.

(a) Top view and cross-section of the LC structure; (b) Measured gradient distribution of the phase retardation.

Fig. 5.
Fig. 5.

Simulated pretilt angle distribution of the axially-symmetric SPNLC cell.

Fig. 6.
Fig. 6.

Measured V-T curves at different positions of the axially-symmetric SPNLC cell.

Fig. 7.
Fig. 7.

Measured response time at different positions of the axially-symmetric SPNLC cell.

Fig. 8.
Fig. 8.

(a) A movie shows the real dynamic image of the axially-symmetric SPNLC cell (492KB), and (b) Simulation results (443KB).

Fig. 9.
Fig. 9.

(a) Incident light with vertical linear polarization, (b) Rotationally symmetric half wave plate, and (c) Output light with polarization P=2 field.

Metrics