Abstract

An axially-symmetric sheared polymer network liquid crystal (SPNLC) device is demonstrated and its performances characterized. Through analyzing the structure of this axially-symmetric SPNLC, we constructed a 3-D model to explain the observed phenomena. The simulation results agree well with the experiment. Two potential applications of such an axially-symmetric SPNLC, namely tunable-focus negative lens and spatial polarization converter, are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Axially symmetric liquid crystal devices based on double-side photo-alignment

Shih-Wei Ko, Ying-Yu Tzeng, Chi-Lun Ting, Andy Y.-G. Fuh, and Tsung-Hsien Lin
Opt. Express 16(24) 19643-19648 (2008)

Gradient polymer network liquid crystal with a large refractive index change

Hongwen Ren, Su Xu, and Shin-Tson Wu
Opt. Express 20(24) 26464-26472 (2012)

Determination of surface tilt angle of splay and bend liquid crystal cells

Jy-Shan Hsu and Chun-Hao Yeh
Appl. Opt. 48(1) 43-47 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75, 859–861 (1999).
    [Crossref]
  2. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
    [Crossref]
  3. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28, 1730–1731(1989).
    [Crossref]
  4. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996) http://ol.osa.org/abstract.cfm?id=45260
    [Crossref] [PubMed]
  5. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings,” Opt. Lett. 28, 510–512 (2003) http://ol.osa.org/abstract.cfm?id=71638
    [Crossref] [PubMed]
  6. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). http://ao.osa.org/abstract.cfm?id=37968
    [Crossref] [PubMed]
  7. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
    [Crossref]
  8. J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
    [Crossref]
  9. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
    [Crossref]
  10. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33, 1817–1822 (2000).
    [Crossref]

2005 (2)

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[Crossref]

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

2004 (2)

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[Crossref]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

2003 (1)

2000 (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33, 1817–1822 (2000).
[Crossref]

1999 (1)

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75, 859–861 (1999).
[Crossref]

1996 (1)

1990 (1)

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28, 1730–1731(1989).
[Crossref]

Biener, G.

Fan, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[Crossref]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[Crossref]

Ford, D. H.

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[Crossref]

Glushchenko, A.

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Hasman, E.

Kim, H. R.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75, 859–861 (1999).
[Crossref]

Kimura, W. D.

Kleiner, V.

Lee, J. H.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75, 859–861 (1999).
[Crossref]

Lee, S. D.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75, 859–861 (1999).
[Crossref]

Lin, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[Crossref]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Lu, Y. Q.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33, 1817–1822 (2000).
[Crossref]

Niv, A.

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33, 1817–1822 (2000).
[Crossref]

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28, 1730–1731(1989).
[Crossref]

Ren, H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[Crossref]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[Crossref]

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28, 1730–1731(1989).
[Crossref]

Schadt, M.

Stalder, M.

Tidwell, S. C.

West, J. L.

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Wu, J. R.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Wu, S. T.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[Crossref]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[Crossref]

Wu, Y. H.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28, 1730–1731(1989).
[Crossref]

Zhang, G.

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. L. West, G. Zhang, and A. Glushchenko, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[Crossref]

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75, 859–861 (1999).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28, 1730–1731(1989).
[Crossref]

Opt. Express (1)

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express,  12, 6377–6384 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382
[Crossref]

Opt. Lett. (2)

Phys. D: Appl. Phys. (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33, 1817–1822 (2000).
[Crossref]

Supplementary Material (2)

» Media 1: MPG (492 KB)     
» Media 2: MPG (443 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

SPNLC structure observed under crossed polarizers.

Fig. 2.
Fig. 2.

Voltage-dependent transmittance of the axially symmetric SPNLC cell. d=9 µm and λ=633 nm.

Fig. 3.
Fig. 3.

Optical response time of the 9-µm axially-symmetric SPNLC: (a) rise time, and (b) decay time.

Fig. 4.
Fig. 4.

(a) Top view and cross-section of the LC structure; (b) Measured gradient distribution of the phase retardation.

Fig. 5.
Fig. 5.

Simulated pretilt angle distribution of the axially-symmetric SPNLC cell.

Fig. 6.
Fig. 6.

Measured V-T curves at different positions of the axially-symmetric SPNLC cell.

Fig. 7.
Fig. 7.

Measured response time at different positions of the axially-symmetric SPNLC cell.

Fig. 8.
Fig. 8.

(a) A movie shows the real dynamic image of the axially-symmetric SPNLC cell (492KB), and (b) Simulation results (443KB).

Fig. 9.
Fig. 9.

(a) Incident light with vertical linear polarization, (b) Rotationally symmetric half wave plate, and (c) Output light with polarization P=2 field.

Metrics