Abstract

We report the observation of four-wave mixing phenomenon in a simple silicon wire waveguide at the optical powers normally employed in communications systems. The maximum conversion efficiency is about -35 dB in the case of a 1.58-cm-long silicon wire waveguide. The nonlinear refractive index coefficient is found to be 9×10-18 m2/W. This value is not negligible for dense wavelength division multiplexing components, because it predicts the possibility of large crosstalk. On the other hand, with longer waveguide lengths with smaller propagation loss, it would be possible to utilize just a simple silicon wire for practical wavelength conversion. We demonstrate the wavelength conversion for data rate of 10-Gbps using a 5.8-cm-long silicon wire. These characteristics are attributed to the extremely small core of silicon wire waveguides.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, L.C Kimerling, �??Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,�?? Appl. Phys. Lett. 77, 1617 (2000).
    [CrossRef]
  2. A. Sakai, G. Hara, T. Baba, �??Propagation Characteristics of Ultrahigh-�? Optical Waveguide,�?? Jpn. J. Appl. Phys. 40, L384 (2001).
    [CrossRef]
  3. A. Sakai, T. Fukazawa, T. Baba, �??Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,�?? IEICE Trans. Electron. E85-C, 1033 (2002).
  4. T. Shoji, T. Tsuchizawa, T.Watanabe, K. Yamada, H. Morita, �??Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers�??, Electron. Lett. 38, 1669 (2002).
    [CrossRef]
  5. K. Yamada, T. Shoji, T. Tsuchizawa, T.Watanabe, J. Takahashi, S. Itabashi, �??Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,�?? Opt. Lett. 28, 1663 (2003).
    [CrossRef] [PubMed]
  6. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H.Fukuda, S. Itabashi, H. Morita, �??Microphotonics Devices Based on Silicon Wire Waveguiding System,�?? IEICE Trans. Electron. E87-C, 351 (2004).
  7. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. Morita, �??Microphotonics Devices Based on Silicon Micro-Fabrication Technology,�?? IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
    [CrossRef]
  8. Govind P. Agrawad, �??NONLINEAR FIBER OPTICS, Second Edition,�?? Academic Press, (1995).
  9. O. Boyraz, B. Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12, 5269 (2004).
    [CrossRef] [PubMed]
  10. O. Boyraz, B. Jalali, �??Demonstration of directly modulated silicon Raman laser,�?? Opt. Express 13, 796 (2005).
    [CrossRef] [PubMed]
  11. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, �??A continuous-wave Raman silicon laser,�?? Nature 433, 725 (2005).
    [CrossRef] [PubMed]
  12. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, �??An all-silicon Raman laser,�?? Nature 433, 292 (2005).
    [CrossRef] [PubMed]
  13. R. Claps, D. Dimitropoulos, Y. Han, B. Jalali, �??Observation of Raman emission in silicon waveguides at 1.54 μm,�?? Opt. Express 10, 1305 (2002).
    [PubMed]
  14. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, �??Raman amplification in ultrasmall silicon-on-insulator wire waveguides,�?? Opt. Express 12, 3713 (2004).
    [CrossRef] [PubMed]
  15. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, �??A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615 (2004).
    [CrossRef] [PubMed]
  16. C. A. Barrios, V. R. de Almeida, M. Lipson, �??Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator�??, IEEE J. Lightwave Thechnol. 21, 1089 (2003).
    [CrossRef]
  17. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, �??Anti-Stokes Raman conversion in silicon waveguides,�?? Opt. Express 11, 2862 (2003).
    [CrossRef] [PubMed]
  18. S. V. Chernikov, J. R. Taylor, �??Measurement of normalization factor of n2 for random polarization in optical fibers,�?? Opt. Lett. 21, 1559 (1996).
    [CrossRef] [PubMed]
  19. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, O. A. Levring, �??Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,�?? Opt. Lett. 21, 1966 (1996).
    [CrossRef] [PubMed]
  20. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,�?? Appl. Phys. Lett. 80, 416 (2002).
    [CrossRef]
  21. M. Grimsditch, M. Cardona, �??Absolute Cross-Section for Raman Scattering by Phonons in Silicon,�?? Phys. Stat. Sol. B102, 155 (1980).
  22. T. J. Morgan, R. S. Tucker, J. P. R. Lacey, �??All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,�?? IEEE Photo. Technol. Lett. 11, 982 (1999).
    [CrossRef]

Appl. Phys. Lett. (2)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, L.C Kimerling, �??Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,�?? Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,�?? Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T.Watanabe, K. Yamada, H. Morita, �??Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers�??, Electron. Lett. 38, 1669 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. Morita, �??Microphotonics Devices Based on Silicon Micro-Fabrication Technology,�?? IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[CrossRef]

IEEE Photo. Technol. Lett. (1)

T. J. Morgan, R. S. Tucker, J. P. R. Lacey, �??All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,�?? IEEE Photo. Technol. Lett. 11, 982 (1999).
[CrossRef]

IEICE Trans. Electron. (2)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H.Fukuda, S. Itabashi, H. Morita, �??Microphotonics Devices Based on Silicon Wire Waveguiding System,�?? IEICE Trans. Electron. E87-C, 351 (2004).

A. Sakai, T. Fukazawa, T. Baba, �??Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,�?? IEICE Trans. Electron. E85-C, 1033 (2002).

J. Lightwave Thechnol. (1)

C. A. Barrios, V. R. de Almeida, M. Lipson, �??Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator�??, IEEE J. Lightwave Thechnol. 21, 1089 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Sakai, G. Hara, T. Baba, �??Propagation Characteristics of Ultrahigh-�? Optical Waveguide,�?? Jpn. J. Appl. Phys. 40, L384 (2001).
[CrossRef]

Nature (3)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, �??A continuous-wave Raman silicon laser,�?? Nature 433, 725 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, �??An all-silicon Raman laser,�?? Nature 433, 292 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, �??A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

K. Yamada, T. Shoji, T. Tsuchizawa, T.Watanabe, J. Takahashi, S. Itabashi, �??Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,�?? Opt. Lett. 28, 1663 (2003).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, �??Measurement of normalization factor of n2 for random polarization in optical fibers,�?? Opt. Lett. 21, 1559 (1996).
[CrossRef] [PubMed]

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, O. A. Levring, �??Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,�?? Opt. Lett. 21, 1966 (1996).
[CrossRef] [PubMed]

Phys. Stat. Sol. (1)

M. Grimsditch, M. Cardona, �??Absolute Cross-Section for Raman Scattering by Phonons in Silicon,�?? Phys. Stat. Sol. B102, 155 (1980).

Other (1)

Govind P. Agrawad, �??NONLINEAR FIBER OPTICS, Second Edition,�?? Academic Press, (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Cross-sectional structure of a Si wire WG.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Input and output spectra for a 1.58-cm-long Si wire WG.

Fig. 4.
Fig. 4.

Conversion efficiency as a function of pump power. The dots are the measured points and the solid line is a fit.

Fig. 5.
Fig. 5.

Detuning characteristics of FWM for Si wire WGs.

Fig. 6.
Fig. 6.

Nonlinear phase shift for Si wire WGs. The dots are the measured points and the solid line is a fit.

Fig. 7.
Fig. 7.

Enhancement by ring resonator.

Fig. 8.
Fig. 8.

Output spectrum for a 5.8-cm-long Si wire WG. Right: enlarged view of the phase conjugated light.

Fig. 9.
Fig. 9.

Waveforms for 100-ps pulse trains. Left: input pump light. Right: converted signal.

Fig. 10.
Fig. 10.

Estimated crosstalk/conversion efficiency caused by FWM in Si wire WGs

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L coh = 2 π Δ k
Δ k = d n g d ω ( Δ ω ) 2 c ,
n 2 = A eff c 2 ω 0 L eff P φ ,
I 0 I 1 = J 0 2 ( φ 2 ) + J 1 2 ( φ 2 ) J 1 2 ( φ 2 ) + J 2 2 ( φ 2 ) ,
A eff = ( + + E ( x , y ) 2 dxdy ) 2 + + E ( x , y ) 4 dxdy ,

Metrics