Abstract

We report the observation of four-wave mixing phenomenon in a simple silicon wire waveguide at the optical powers normally employed in communications systems. The maximum conversion efficiency is about -35 dB in the case of a 1.58-cm-long silicon wire waveguide. The nonlinear refractive index coefficient is found to be 9×10-18 m2/W. This value is not negligible for dense wavelength division multiplexing components, because it predicts the possibility of large crosstalk. On the other hand, with longer waveguide lengths with smaller propagation loss, it would be possible to utilize just a simple silicon wire for practical wavelength conversion. We demonstrate the wavelength conversion for data rate of 10-Gbps using a 5.8-cm-long silicon wire. These characteristics are attributed to the extremely small core of silicon wire waveguides.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
    [Crossref]
  2. A. Sakai, G. Hara, and T. Baba, “Propagation Characteristics of Ultrahigh-Δ Optical Waveguide,” Jpn. J. Appl. Phys. 40, L384 (2001).
    [Crossref]
  3. A. Sakai, T. Fukazawa, and T. Baba, “Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,” IEICE Trans. Electron. E85-C, 1033 (2002).
  4. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers”, Electron. Lett. 38, 1669 (2002).
    [Crossref]
  5. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663 (2003)
    [Crossref] [PubMed]
  6. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).
  7. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
    [Crossref]
  8. Govind P. Agrawad, “NONLINEAR FIBER OPTICS, Second Edition,” Academic Press, (1995).
  9. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269 (2004).
    [Crossref] [PubMed]
  10. O. Boyraz and B. Jalali, “Demonstration of directly modulated silicon Raman laser,” Opt. Express 13, 796 (2005).
    [Crossref] [PubMed]
  11. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
    [Crossref] [PubMed]
  12. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
    [Crossref] [PubMed]
  13. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305 (2002).
    [PubMed]
  14. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713 (2004).
    [Crossref] [PubMed]
  15. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
    [Crossref] [PubMed]
  16. C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator”, IEEE J. Lightwave Thechnol. 21, 1089 (2003).
    [Crossref]
  17. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862 (2003).
    [Crossref] [PubMed]
  18. S. V. Chernikov and J. R. Taylor, “Measurement of normalization factor of n2 for random polarization in optical fibers,” Opt. Lett. 21, 1559 (1996).
    [Crossref] [PubMed]
  19. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Opt. Lett. 21, 1966 (1996).
    [Crossref] [PubMed]
  20. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
    [Crossref]
  21. M. Grimsditch and M. Cardona, “Absolute Cross-Section for Raman Scattering by Phonons in Silicon,” Phys. Stat. Sol. B102, 155 (1980).
  22. T. J. Morgan, R. S. Tucker, and J. P. R. Lacey, “All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,” IEEE Photo. Technol. Lett. 11, 982 (1999).
    [Crossref]

2005 (4)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of directly modulated silicon Raman laser,” Opt. Express 13, 796 (2005).
[Crossref] [PubMed]

2004 (4)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713 (2004).
[Crossref] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (4)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

A. Sakai, T. Fukazawa, and T. Baba, “Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,” IEICE Trans. Electron. E85-C, 1033 (2002).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers”, Electron. Lett. 38, 1669 (2002).
[Crossref]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305 (2002).
[PubMed]

2001 (1)

A. Sakai, G. Hara, and T. Baba, “Propagation Characteristics of Ultrahigh-Δ Optical Waveguide,” Jpn. J. Appl. Phys. 40, L384 (2001).
[Crossref]

2000 (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
[Crossref]

1999 (1)

T. J. Morgan, R. S. Tucker, and J. P. R. Lacey, “All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,” IEEE Photo. Technol. Lett. 11, 982 (1999).
[Crossref]

1996 (2)

1980 (1)

M. Grimsditch and M. Cardona, “Absolute Cross-Section for Raman Scattering by Phonons in Silicon,” Phys. Stat. Sol. B102, 155 (1980).

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
[Crossref]

Agrawad, Govind P.

Govind P. Agrawad, “NONLINEAR FIBER OPTICS, Second Edition,” Academic Press, (1995).

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

Baba, T.

A. Sakai, T. Fukazawa, and T. Baba, “Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,” IEICE Trans. Electron. E85-C, 1033 (2002).

A. Sakai, G. Hara, and T. Baba, “Propagation Characteristics of Ultrahigh-Δ Optical Waveguide,” Jpn. J. Appl. Phys. 40, L384 (2001).
[Crossref]

Barrios, C. A.

C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator”, IEEE J. Lightwave Thechnol. 21, 1089 (2003).
[Crossref]

Boskovic, A.

Boyraz, O.

Cardona, M.

M. Grimsditch and M. Cardona, “Absolute Cross-Section for Raman Scattering by Phonons in Silicon,” Phys. Stat. Sol. B102, 155 (1980).

Chernikov, S. V.

Claps, R.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Dadap, J. I.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

de Almeida, V. R.

C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator”, IEEE J. Lightwave Thechnol. 21, 1089 (2003).
[Crossref]

Dimitropoulos, D.

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

Espinola, R. L.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
[Crossref]

Fukazawa, T.

A. Sakai, T. Fukazawa, and T. Baba, “Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,” IEICE Trans. Electron. E85-C, 1033 (2002).

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

Grimsditch, M.

M. Grimsditch and M. Cardona, “Absolute Cross-Section for Raman Scattering by Phonons in Silicon,” Phys. Stat. Sol. B102, 155 (1980).

Gruner-Nielsen, L.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

Han, Y.

Hara, G.

A. Sakai, G. Hara, and T. Baba, “Propagation Characteristics of Ultrahigh-Δ Optical Waveguide,” Jpn. J. Appl. Phys. 40, L384 (2001).
[Crossref]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663 (2003)
[Crossref] [PubMed]

Jalali, B.

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Kimerling, L.C

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
[Crossref]

Lacey, J. P. R.

T. J. Morgan, R. S. Tucker, and J. P. R. Lacey, “All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,” IEEE Photo. Technol. Lett. 11, 982 (1999).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
[Crossref]

Levring, O. A.

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
[Crossref]

Lipson, M.

C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator”, IEEE J. Lightwave Thechnol. 21, 1089 (2003).
[Crossref]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
[Crossref]

McNab, S. J.

Morgan, T. J.

T. J. Morgan, R. S. Tucker, and J. P. R. Lacey, “All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,” IEEE Photo. Technol. Lett. 11, 982 (1999).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers”, Electron. Lett. 38, 1669 (2002).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Osgood, R. M.

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Raghunathan, V.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Sakai, A.

A. Sakai, T. Fukazawa, and T. Baba, “Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,” IEICE Trans. Electron. E85-C, 1033 (2002).

A. Sakai, G. Hara, and T. Baba, “Propagation Characteristics of Ultrahigh-Δ Optical Waveguide,” Jpn. J. Appl. Phys. 40, L384 (2001).
[Crossref]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663 (2003)
[Crossref] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers”, Electron. Lett. 38, 1669 (2002).
[Crossref]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663 (2003)
[Crossref] [PubMed]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

Taylor, J. R.

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663 (2003)
[Crossref] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers”, Electron. Lett. 38, 1669 (2002).
[Crossref]

Tucker, R. S.

T. J. Morgan, R. S. Tucker, and J. P. R. Lacey, “All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,” IEEE Photo. Technol. Lett. 11, 982 (1999).
[Crossref]

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

Vlasov, Y. A.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663 (2003)
[Crossref] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers”, Electron. Lett. 38, 1669 (2002).
[Crossref]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663 (2003)
[Crossref] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers”, Electron. Lett. 38, 1669 (2002).
[Crossref]

Appl. Phys. Lett. (2)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L.C Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µmwavelength,” Appl. Phys. Lett. 80, 416 (2002).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers”, Electron. Lett. 38, 1669 (2002).
[Crossref]

IEEE J. Lightwave Thechnol. (1)

C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator”, IEEE J. Lightwave Thechnol. 21, 1089 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Micro-Fabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[Crossref]

IEEE Photo. Technol. Lett. (1)

T. J. Morgan, R. S. Tucker, and J. P. R. Lacey, “All-Optical Wavelength Translation Over 80 nm at 2.5 Gb/s Using Four-Wave Mixing in a Semiconductor Optical Amplifier,” IEEE Photo. Technol. Lett. 11, 982 (1999).
[Crossref]

IEICE Trans. Electron. (2)

A. Sakai, T. Fukazawa, and T. Baba, “Low Loss Ultra-Small Branches in a Silicon Photonic WireWaveguide,” IEICE Trans. Electron. E85-C, 1033 (2002).

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351 (2004).

Jpn. J. Appl. Phys. (1)

A. Sakai, G. Hara, and T. Baba, “Propagation Characteristics of Ultrahigh-Δ Optical Waveguide,” Jpn. J. Appl. Phys. 40, L384 (2001).
[Crossref]

Nature (3)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615 (2004).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Stat. Sol. (1)

M. Grimsditch and M. Cardona, “Absolute Cross-Section for Raman Scattering by Phonons in Silicon,” Phys. Stat. Sol. B102, 155 (1980).

Other (1)

Govind P. Agrawad, “NONLINEAR FIBER OPTICS, Second Edition,” Academic Press, (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Cross-sectional structure of a Si wire WG.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Input and output spectra for a 1.58-cm-long Si wire WG.

Fig. 4.
Fig. 4.

Conversion efficiency as a function of pump power. The dots are the measured points and the solid line is a fit.

Fig. 5.
Fig. 5.

Detuning characteristics of FWM for Si wire WGs.

Fig. 6.
Fig. 6.

Nonlinear phase shift for Si wire WGs. The dots are the measured points and the solid line is a fit.

Fig. 7.
Fig. 7.

Enhancement by ring resonator.

Fig. 8.
Fig. 8.

Output spectrum for a 5.8-cm-long Si wire WG. Right: enlarged view of the phase conjugated light.

Fig. 9.
Fig. 9.

Waveforms for 100-ps pulse trains. Left: input pump light. Right: converted signal.

Fig. 10.
Fig. 10.

Estimated crosstalk/conversion efficiency caused by FWM in Si wire WGs

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L coh = 2 π Δ k
Δ k = d n g d ω ( Δ ω ) 2 c ,
n 2 = A eff c 2 ω 0 L eff P φ ,
I 0 I 1 = J 0 2 ( φ 2 ) + J 1 2 ( φ 2 ) J 1 2 ( φ 2 ) + J 2 2 ( φ 2 ) ,
A eff = ( + + E ( x , y ) 2 dxdy ) 2 + + E ( x , y ) 4 dxdy ,

Metrics