Abstract

The concept of eXtreme Chirped Pulse Amplification (X-CPA) is introduced as a novel method to overcome the energy storage limit of semiconductor optical amplifiers in ultrashort pulse amplification. A colliding pulse mode-locked semiconductor laser is developed as a master oscillator and generates 600fs pulses with 6nm bandwidth at 975nm. Using a highly dispersive chirped fiber Bragg grating (1600ps/nm) as an extreme pulse stretcher and compressor, we demonstrate ~16,000 times extreme chirped pulse amplification and recompression generating optical pulses of 590fs with 1.4kW of peak power. These pulses represent, to our knowledge, the highest peak power generated from an all semiconductor ultrafast laser system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. J. Delfyett, L.T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage and G. A. Alphonse, �??High-Power Ultrafast Laser Diodes,�?? IEEE J. Quantum Electron. 28, 2203-2219 (1992).
    [CrossRef]
  2. S. Gee, G. Alphonese, J. Connolly, P. J. Delfyett, �??High-Power Mode-Locked External Cavity Semiconductor Laser Using Inverse Bow-Tie Semiconductor Optical Amplifiers,�?? IEEE J. Quantum Electron. 4, 209-215 (1998).
    [CrossRef]
  3. A. Mar, R. Helkey, J. Bowers, B. Mehuys, D. Welch, �??Mode-Locked Operation of a Master Oscillator Power Amplifier,�?? IEEE Photon. Techn. Lett., 6, 1067-1069 (1994).
    [CrossRef]
  4. L. Goldberg, D. Mehuys, D. Welch, �??High Power Mode-Locked Compound Laser Using a Tapered Semiconductor Amplifier,�?? IEEE Photon. Technol. Lett., 6, 1070-1072 (1994).
    [CrossRef]
  5. K. Kim, S. Lee, P. J. Delfyett, �??eXtreme Chirped Pulse Amplification (X-CPA) with Semiconductor Gain Media,�?? LEOS Annual Meeting, WB4 (2003); K. Kim, S. Lee, P. J. Delfyett, �??X-CPA (eXtreme Chirped Pulse Amplification) �?? Beyond the Energy Storage Limit of Semiconductor Gain Media,�?? CLEO conference, CTuY2 (2004); P. J. Delfyett, K. Kim, B. Resan, �??eXtreme Chirped/Stretched Pulsed Amplification and Laser�?? (patent pending)
  6. J. Brennan and D. LaBrake, �??Realization of >10-m-long chirped fiber Bragg gratings,�?? Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, Washington. DC, 1999), pp.128-130
  7. G.C. Gilbreath, W.S. Rabinoich, T.J. Meehan, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J.A. Vasquez, C.S. Bovais, K. Cochrell, K.C. Goins, R. Rarbehenn, D.S. Katzer, K. Ilkossi-Anansasiou, M.J. Montes, �??Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,�?? Opt. Eng. 40, 1348-1356 (2000)
    [CrossRef]
  8. O. Martinez, �??3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region,�?? IEEE J. Quantum Electron. 23, 59-64 (1987).
    [CrossRef]
  9. K. Kim, S. Lee, P. J. Delfyett, �??Generation of 238nJ, 16ns Stretched Pulses in all Semiconductor X-CPA,�?? LEOS 2004 Annual Meeting, WFF2 (2004)
  10. B. Resan, P. J. Delfyett, �??Dispersion-Managed Breathing-Mode Semiconductor Mode-Locked Ring Laser : Experimental Characterization and Numerical Simulations,�?? IEEE J. Quantum Electron. 40, 214-221 (2004).

IEEE J. Quantum Electron.

P. J. Delfyett, L.T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage and G. A. Alphonse, �??High-Power Ultrafast Laser Diodes,�?? IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

S. Gee, G. Alphonese, J. Connolly, P. J. Delfyett, �??High-Power Mode-Locked External Cavity Semiconductor Laser Using Inverse Bow-Tie Semiconductor Optical Amplifiers,�?? IEEE J. Quantum Electron. 4, 209-215 (1998).
[CrossRef]

O. Martinez, �??3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region,�?? IEEE J. Quantum Electron. 23, 59-64 (1987).
[CrossRef]

B. Resan, P. J. Delfyett, �??Dispersion-Managed Breathing-Mode Semiconductor Mode-Locked Ring Laser : Experimental Characterization and Numerical Simulations,�?? IEEE J. Quantum Electron. 40, 214-221 (2004).

IEEE Photon. Techn. Lett.

A. Mar, R. Helkey, J. Bowers, B. Mehuys, D. Welch, �??Mode-Locked Operation of a Master Oscillator Power Amplifier,�?? IEEE Photon. Techn. Lett., 6, 1067-1069 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Goldberg, D. Mehuys, D. Welch, �??High Power Mode-Locked Compound Laser Using a Tapered Semiconductor Amplifier,�?? IEEE Photon. Technol. Lett., 6, 1070-1072 (1994).
[CrossRef]

Opt. Eng.

G.C. Gilbreath, W.S. Rabinoich, T.J. Meehan, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J.A. Vasquez, C.S. Bovais, K. Cochrell, K.C. Goins, R. Rarbehenn, D.S. Katzer, K. Ilkossi-Anansasiou, M.J. Montes, �??Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,�?? Opt. Eng. 40, 1348-1356 (2000)
[CrossRef]

Other

K. Kim, S. Lee, P. J. Delfyett, �??Generation of 238nJ, 16ns Stretched Pulses in all Semiconductor X-CPA,�?? LEOS 2004 Annual Meeting, WFF2 (2004)

K. Kim, S. Lee, P. J. Delfyett, �??eXtreme Chirped Pulse Amplification (X-CPA) with Semiconductor Gain Media,�?? LEOS Annual Meeting, WB4 (2003); K. Kim, S. Lee, P. J. Delfyett, �??X-CPA (eXtreme Chirped Pulse Amplification) �?? Beyond the Energy Storage Limit of Semiconductor Gain Media,�?? CLEO conference, CTuY2 (2004); P. J. Delfyett, K. Kim, B. Resan, �??eXtreme Chirped/Stretched Pulsed Amplification and Laser�?? (patent pending)

J. Brennan and D. LaBrake, �??Realization of >10-m-long chirped fiber Bragg gratings,�?? Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, Washington. DC, 1999), pp.128-130

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

the concept of eXtreme Chirped Pulse Amplification(X-CPA). (ML’d laser : mode-locked semiconductor laser, Ein : input energy, Esat : saturation energy of semiconductor optical amplifier, CFBG : chirped fiber Bragg grating, OC : optical circulator, SOAs : semiconductor optical amplifiers, tstret : time duration of stretched pulse, tSOA : energy storage lifetime of semiconductor optical amplifier, Eout : output energy)

Fig. 2.
Fig. 2.

colliding pulse, hybrid mode-locked semiconductor laser, (a) cavity setup (HR : high reflector, MQWSA : multiple quantum well saturable absorber, IBTSOA : inverse bowtie semiconductor optical amplifier, OC : output coupler, slit : adjustable slit, L : cavity length), (b) autocorrelation trace of optical pulse from CPMLL after an external bulk grating pulse compressor) and (c) optical spectrum of GFMLL and transmitted optical spectrum of MQW SA

Fig. 3.
Fig. 3.

(a) chirped fiber Bragg grating as an extreme pulse stretcher and compressor, group delay and reflectance band from (b) red port and (c) blue port of CFBG

Fig. 4.
Fig. 4.

experimental setup of X-CPA system (CPMLL : colliding pulse hybrid mode-locked semiconductor laser, OI : optical isolator, PBS : Polarizing Beam Splitter, HWP : half wave plate, FR : faraday rotator, lens: coupling/collimating lens, RWGSOA : ridge waveguide single mode semiconductor optical amplifier, TA : tapered amplifier, BPF : band pass filter, PC : polarization controller, CFBG : chirped fiber Bragg grating)

Fig. 5.
Fig. 5.

spectrally resolved streak camera images of (a) optical pulse from CPMLL combined with a DC biased pulse picker, (b) stretched pulses from extreme pulse stretcher without a pulse picking and (c) stretched pulses from extreme pulse stretcher with a pulse picking. (horizontal axis : wavelength with 22nm full window, vertical axis : time with 50ns full window), (d) optical spectrum from tapered amplifier output with and without injection (dark line : with injection, light line : without injection, dotted line : reflectance band edges of CFBG)

Fig. 6.
Fig. 6.

(a) autocorrelation trance [12.5ps/div] and (b) optical spectrum of compressible up-chirped optical pulse from CPMLL, (c) autocorrelation trace [5ps/div, 2ps/div] and (d) optical spectrum of recompressed pulse from X-CPA system, dotted lines in Fig. (b) and (d): reflectance band edges of CFBG

Metrics