Abstract

We realized optical data storage in a human fingernail. A structural change is recorded by irradiating a focused femtosecond laser pulse and is read out with fluorescent observation by making use of an increased fluorescence intensity. The shape of the structural changes drastically depends on the irradiated pulse energy. The fluorescence spectrum of the structure coincided with the auto-fluorescence spectra of a fingernail and a heated fingernail. It is suggested that the increased fluorescence is most likely caused by a local denaturation of the keratin protein by the femtosecond laser pulse irradiation. We demonstrate that the increased fluorescence effect is useful for reading out three-dimensionally recorded data.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Du, X. Liu, G. Korn, and G. Mourou, �??Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150fs,�?? Appl. Phys. Lett. 64, 3071-3073 (1994).
    [CrossRef]
  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, �??Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,�?? Appl. Phys. Lett. 65, 1850-1852 (1994).
    [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  4. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, �??Three-dimensional optical storage inside transparent materials,�?? Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  5. E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? Appl. Phys. Lett. 71, 882-884 (1997).
    [CrossRef]
  6. Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, �??Three-dimensional microscopic crystallization in photosenseitive glass by femtosecond laser pulses at nonresonant wavelength,�?? Jpn. J. Appl. Phys. 37, 94-95 (1998).
    [CrossRef]
  7. M. Watanabe, H. -B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, �??Three-dimensional optical data storage in vitreous silica,�?? Jpn. J. Appl. Phys. 37, 1527-1530 (1998).
    [CrossRef]
  8. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, �??Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,�?? Opt. Lett. 25, 1669-1671 (2000).
    [CrossRef]
  9. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, and J.-P. Ruske, B. N. Chichkov, and A. Tünnermann, �??Sub-diffraction limited structuring of solid targets with femtosecond laser pulses,�?? Opt. Express 7, 41-49 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-41.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-41.</a>
    [CrossRef]
  10. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, �??Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,�?? Opt. Express 10, 978-983 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-19-978.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-19-978.</a>
    [PubMed]
  11. J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, �??Embedded anisotropic microreflectors by femtosecond-laser nanomachining,�?? Appl. Phys. Lett. 81, 196-198 (2002).
    [CrossRef]
  12. D. A. Parthenopoulos and P. M. Rentzepis, �??Three-dimensional optical storage memory,�?? Science 245, 843-845 (1989).
    [CrossRef] [PubMed]
  13. J. H. Strickler and W. W. Webb, �??Three-dimensional optical data storage in refractive media by two-photon point excitation,�?? Opt. Lett. 16, 1780-1782 (1991).
    [CrossRef] [PubMed]
  14. Y. Kawata, H. Ueki, Y. Hashimoto, and S. Kawata, �??Three-dimensional optical memory with a photorefractive crystal,�?? Appl. Opt. 34, 4105-4110 (1995).
    [CrossRef] [PubMed]
  15. M. M. Wang, S. C. Esener, F. B. McCormick, I. Cogör, A. S. Dvornikov, and P. M. Rentzepis, �??Experimental characterization of a two-photon memory,�?? Opt. Lett. 22, 558-560 (1997).
    [CrossRef] [PubMed]
  16. A. Takita, M. Watanabe, H. Yamamoto, S. Matsuo, H. Misawa, Y. Hayasaki, and N. Nishida, �??Optical bit recording in a human fingernail,�?? Jpn. J. Appl. Phys. 43, 168-171 (2004), <a href="http://jjap.ipap.jp/link?JJAP/43/168/.">http://jjap.ipap.jp/link?JJAP/43/168/.</a>
    [CrossRef]
  17. Y. Hayasaki, H. Takagi, A. Takita, H. Yamamoto, N. Nishida, and H. Misawa, �??Processing structures on human fingernail surface by a focused near-infrared femtosecond laser pulse,�?? Jpn. J. Appl. Phys. 43, 8089-8093 (2004), <a href="http://jjap.ipap.jp/link?JJAP/43/8089/.">http://jjap.ipap.jp/link?JJAP/43/8089/.</a>
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, �??Embedded anisotropic microreflectors by femtosecond-laser nanomachining,�?? Appl. Phys. Lett. 81, 196-198 (2002).
[CrossRef]

D. Du, X. Liu, G. Korn, and G. Mourou, �??Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150fs,�?? Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, �??Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,�?? Appl. Phys. Lett. 65, 1850-1852 (1994).
[CrossRef]

E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, and K. Hirao, �??Three-dimensional microscopic crystallization in photosenseitive glass by femtosecond laser pulses at nonresonant wavelength,�?? Jpn. J. Appl. Phys. 37, 94-95 (1998).
[CrossRef]

M. Watanabe, H. -B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, �??Three-dimensional optical data storage in vitreous silica,�?? Jpn. J. Appl. Phys. 37, 1527-1530 (1998).
[CrossRef]

A. Takita, M. Watanabe, H. Yamamoto, S. Matsuo, H. Misawa, Y. Hayasaki, and N. Nishida, �??Optical bit recording in a human fingernail,�?? Jpn. J. Appl. Phys. 43, 168-171 (2004), <a href="http://jjap.ipap.jp/link?JJAP/43/168/.">http://jjap.ipap.jp/link?JJAP/43/168/.</a>
[CrossRef]

Y. Hayasaki, H. Takagi, A. Takita, H. Yamamoto, N. Nishida, and H. Misawa, �??Processing structures on human fingernail surface by a focused near-infrared femtosecond laser pulse,�?? Jpn. J. Appl. Phys. 43, 8089-8093 (2004), <a href="http://jjap.ipap.jp/link?JJAP/43/8089/.">http://jjap.ipap.jp/link?JJAP/43/8089/.</a>
[CrossRef]

Opt. Express

Opt. Lett.

Science

D. A. Parthenopoulos and P. M. Rentzepis, �??Three-dimensional optical storage memory,�?? Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Femtosecond laser processing system.

Fig. 2.
Fig. 2.

Multilayered bit arrays at (a) Z=40 µm, (b) Z=60 µm, and (c) Z=80 µm. The scale bar indicates 10 µm.

Fig. 3.
Fig. 3.

Side view of the structures formed in a human fingernail with (a) Ep =0.25 µJ, (b) Ep =0.49 µJ, (c) Ep =0.98 µJ, (d) Ep =2.0 µJ, and (e) Ep =3.9 µJ. The scale bar indicates 10 µm. The figure is made of two images that were obtained with adjusting the observation focus to the structures in each images.

Fig. 4.
Fig. 4.

Fluorescent image of a side view of the structures formed in a human fingernail. The scale bar indicates 10 µm. The profile is the intensity distribution along a white line in the image. The figure is made of three images that were obtained with adjusting the observation focus to the structures in each images.

Fig. 5.
Fig. 5.

Bits recorded by changing focusing position. (a) A transmission-illumination image and (b) a fluorescence image. Atomic force microscope observation images of (c) a pit (Z=5.5 µm) and (d) a swell (Z=6.0 µm). The scale bar indicates 10 µm in (a) and (b), and the side length of figures (c) and (d) is 7.5 µm.

Fig. 6.
Fig. 6.

(a) The fluorescence spectra from auto-fluorescence of a fingernail (solid curve) and from the structure formed by femtosecond laser pulse irradiation (dashed curve), and the ratio of fluorescence intensity of the structure and the auto-fluorescence (dotted curve). (b) The fluorescence spectra from fingernails heated at various temperatures (dashed, dotted, dash-dotted, and dash-dot-dotted curves) and a fingernail kept at room temperature (RT, solid curve).

Fig. 7.
Fig. 7.

Fluorescence images of 3 bit planes recorded inside human fingernail at (a) Z=40 µm, (b) Z=60 µm, and (c) Z=80 µm. Images were taken 1 day after recording. The scale bar indicates 10 µm.

Fig. 8.
Fig. 8.

Fluorescence image taken 172 days after recording. The scale bar indicates 10 µm. The profile is the intensity distribution along a white line in the image.

Metrics