Abstract

We have studied the distribution of the electric and magnetic energy densities within and in the vicinity outside a dielectric particle illuminated by a plane electromagnetic wave. Numerical simulations were performed by using the Lorenz-Mie theory and the finite-difference time-domain method for spheres and spheroids, respectively. We found that the electric and magnetic energy densities are locally different within the scatterers. The knowledge of the two components of the electromagnetic energy density is essential to the study of the dipole (electric or magnetic) transitions that have potential applications to Raman and fluorescence spectroscopy.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W. �??F. Hsieh, and R. K. Chang, �??Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,�?? Appl. Opt. 26, 1348-1356 (1987)
    [CrossRef] [PubMed]
  2. J. F. Owen, R. K. Chang and P. W. Barber, �??Internal electric field distributions of a dielectric cylinder at resonance wavelengths,�?? Opt. Lett. 6, 540-542 (1981).
    [CrossRef] [PubMed]
  3. L. G. Astafyeva, V. A. Babenko, �??Interaction of electromagnetic radiation with silicate spheroidal aerosol particles,�?? J. Quant. Spectrosc. Radiat. Transfer 88, 9-15 (2004).
    [CrossRef]
  4. J. P. Barton, �??Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination,�?? JOSA 19, 2429-2435 (2002).
    [CrossRef]
  5. K. S. Yee, �??Numerical solution of initial boundary problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
  6. Sun, W., Q. Fu, and Z. Chen, 1999: �??Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,�?? Appl. Opt. 38, 3141- 3151.
    [CrossRef]
  7. Yang, P., K. N. Liou, M. I. Mishchenko, and B.-C. Gao, 2000: An efficient finite-difference time domain scheme for light scattering by dielectric particles: application to aerosols, Appl. Opt. 39, 3727-3737.
    [CrossRef]
  8. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, Boston, MA, 2000).
  9. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds. Light Scattering by Nonspherical Particles (Academic Press, San Diego, CA, 2000).
  10. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, �??A perfect matched anisotropic absorber for use as an absorbing boundary condition,�?? IEEE Trans. Antennas Propagat 43, 1460-1463 (1995).
    [CrossRef]
  11. C. Li, G. W. Kattawar and P. Yang, �??Effects of surface roughness on light scattering by small particles,�?? J. Quant. Spectrosc. Radiat. Transfer 89, 123-131 (2004).
    [CrossRef]
  12. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons Inc. 1998).
  13. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, �??FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores,�?? Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
    [CrossRef] [PubMed]
  14. J. P. Barton, D. R. Alexander, and S. A. Schaub, �??Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,�?? J. Appl. Phys. 64, 1632-1639 (1988).
    [CrossRef]
  15. Z. Chen, A. Taflove, �??Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,�?? Opt. Express 12, 1214-1220 (2004).
    [CrossRef] [PubMed]
  16. E. Betzig and J. K. Trautman, �??Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,�?? Science 257, 189-195 (1992).
    [CrossRef] [PubMed]

Appl. Opt. (3)

IEEE Trans. Antennas Propagat (1)

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, �??A perfect matched anisotropic absorber for use as an absorbing boundary condition,�?? IEEE Trans. Antennas Propagat 43, 1460-1463 (1995).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

K. S. Yee, �??Numerical solution of initial boundary problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, �??Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,�?? J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

C. Li, G. W. Kattawar and P. Yang, �??Effects of surface roughness on light scattering by small particles,�?? J. Quant. Spectrosc. Radiat. Transfer 89, 123-131 (2004).
[CrossRef]

L. G. Astafyeva, V. A. Babenko, �??Interaction of electromagnetic radiation with silicate spheroidal aerosol particles,�?? J. Quant. Spectrosc. Radiat. Transfer 88, 9-15 (2004).
[CrossRef]

JOSA (1)

J. P. Barton, �??Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination,�?? JOSA 19, 2429-2435 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, �??FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores,�?? Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Science (1)

E. Betzig and J. K. Trautman, �??Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,�?? Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Other (3)

J. D. Jackson, Classical Electrodynamics (John Wiley and Sons Inc. 1998).

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, Boston, MA, 2000).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds. Light Scattering by Nonspherical Particles (Academic Press, San Diego, CA, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Particle geometries used in this study: a homogenous sphere with a diameter of 1.0 µm and a homogenous ellipsoid with a major axis of 1.56 µm and a minor axis of 0.8 µm. The two particles have the same volume.

Fig. 2.
Fig. 2.

Internal and near-field electric and magnetic energy densities and their differences. The incident wavelength and refractive index for the simulation are λ=0.3µm and m=1.34, respectively. (a) The electric energy density; (b) the magnetic energy density; and (c) the differences between the two densities (the electric energy density minus the magnetic energy density). One should note the jet-like behavior outside the particle in the forward direction.

Fig. 3.
Fig. 3.

Same as Fig. 2 except for refractive index of m=2.0. Also we note similar jet-like pattern as in Fig. 2.

Fig. 4.
Fig. 4.

Same as Fig.3, except that the shape is an ellipsoid.

Fig. 5.
Fig. 5.

Same as Fig.4, except that the incidence is perpendicular to the symmetric axis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u e ( r ) = 1 2 ε ( r ) < E 2 ( r ) > ,
u h ( r ) = 1 2 μ ( r ) < H 2 ( r ) > ,

Metrics