Abstract

We have designed a versatile, multi-channel near-infrared spectrophotometry (NIRS) instrument for the purpose of mapping neuronal activation in the neonatal and adult brain in response to motor, tactile, and visual stimulation. The optical linearity, stability, and high signal to noise ratio (>70 dB) of the instrument were demonstrated using an in vitro validation procedure. In vivo measurements on the adult forearm were also performed. Changes in oxygenation, induced by arterial occlusion of the forearm, were recorded and were shown to compare well with measurements acquired using a conventional NIRS instrument. To demonstrate the capabilities of the instrument, functional measurements in adults and neonates were performed. The instrument exhibited the capability to differentiate with a spatial resolution in the order of cm, local activation patterns associated with a finger tapping sequence.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman- Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, "Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI," Neuroimage 6, 168-80 (1997).
    [CrossRef] [PubMed]
  2. M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in motor cortex," Neuroimage, 17, 1868-75 (2002).
    [CrossRef] [PubMed]
  3. J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer. �??Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head.�?? Neurosci Lett 15, 105-108 (2000).
    [CrossRef]
  4. M. Wolf, U. Wolf U, J. H. Choi, V. Toronov, L. A. Paunescu, A. Michalos, and E. Gratton. �??Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry.�?? Psychophysiology 40(4), 521-528 (2003).
    [CrossRef]
  5. M. A. Franceschini, and D. A. Boas. �??Noninvasive measurement of neuronal activity with near-infrared optical imaging.�?? Neuroimage 21(1), 372-386 (2004).
    [CrossRef]
  6. I. Tasaki. �??Rapid structural changes in nerve fibers and cells associated with their excitation processes,�?? Jpn J Physiol 49, 125-38 (1999)
    [CrossRef] [PubMed]
  7. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci 20, 435-42 (1997).
    [CrossRef] [PubMed]
  8. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, "Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study," Neuroimage 16, 704-12 (2002).
    [CrossRef] [PubMed]
  9. J. Ruben, R. Wenzel, H. Obrig, K. Villringer, J. Bernarding, C. Hirth, H. Heekeren, U. Dirnagl, and A. Villringer, "Haemoglobin oxygenation changes during visual stimulation in the occipital cortex," Adv Exp Med Biol 428, 181-7 (1997).
    [CrossRef] [PubMed]
  10. J. H. Meek, M. Firbank, C. E. Elwell, J. Atkinson, O. Braddick, and J. S. Wyatt, "Regional hemodynamic responses to visual stimulation in awake infants," Pediatr Res 43, 840-3 (1998).
    [CrossRef] [PubMed]
  11. K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, "Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy," Early Hum Dev 55, 229-36 (1999).
    [CrossRef] [PubMed]
  12. W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, "Cortical blood oxygenation changes in the left and right occipital area induced by selective visual stimuli in humans," Adv Exp Med Biol 471, 35-41 (1999).
    [CrossRef]
  13. W. N. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp Brain Res 129, 457-61 (1999).
    [CrossRef] [PubMed]
  14. M. Bartocci, J. Winberg, C. Ruggiero, L. L. Bergqvist, G. Serra, and H. Lagercrantz, "Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study," Pediatr Res 48, 18-23 (2000).
    [CrossRef] [PubMed]
  15. F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-7 (1977).
    [CrossRef] [PubMed]
  16. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, "Performance comparison of several published tissue near-infrared spectroscopy algorithms," Anal Biochem, 227, 54-68 (1995).
    [CrossRef] [PubMed]
  17. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, "Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation," Biochim Biophys Acta 933, 184-92 (1988).
    [CrossRef] [PubMed]
  18. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin," Clin Chem, 37, 1633-8 (1991).
    [PubMed]
  19. H. Jasper, "Report of Committee on the Methods of Clinical Examination in Electroencephalography," Electroencephalogr Clin Neurophysiol, 10, 370-375 (1958).
    [CrossRef]
  20. P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, "Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates," Pediatr Res 49, 213-9 (2001).
    [CrossRef] [PubMed]
  21. P. Wobst, R. Wenzel, M. Kohl, H. Obrig, and A. Villringer, "Linear aspects of changes in deoxygenated hemoglobin concentration and cytochrome oxidase oxidation during brain activation," Neuroimage 13, 520-30 (2001).
    [CrossRef] [PubMed]
  22. K. von Siebenthal, J. Beran, M. Wolf, M. Keel, V. Dietz, S. Kundu, and H. U. Bucher, "Cyclical fluctuations in blood pressure, heart rate and cerebral blood volume in preterm infants," Brain Dev, 21, 529-34 (1999).
    [CrossRef] [PubMed]
  23. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl, and A. Villringer, "Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults," Neuroimage 12, 623-39 (2000).
    [CrossRef] [PubMed]
  24. H. Obrig, C. Hirth, J. G. Junge-Hulsing, C. Doge, T. Wolf, U. Dirnagl, and A. Villringer, "Cerebral oxygenation changes in response to motor stimulation," J Appl Physiol 81, 1174-83 (1996).
    [PubMed]
  25. C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Muhlnickel, H. Flor, U. Dirnagl, and A.Villringer, "Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy," Neuroreport 7, 1977-81 (1996).
    [CrossRef] [PubMed]

Adv Exp Med Biol

W. N. Colier, V. Quaresima, R. Wenzel, M. C. van der Sluijs, B. Oeseburg, M. Ferrari, and A. Villringer, "Cortical blood oxygenation changes in the left and right occipital area induced by selective visual stimuli in humans," Adv Exp Med Biol 471, 35-41 (1999).
[CrossRef]

J. Ruben, R. Wenzel, H. Obrig, K. Villringer, J. Bernarding, C. Hirth, H. Heekeren, U. Dirnagl, and A. Villringer, "Haemoglobin oxygenation changes during visual stimulation in the occipital cortex," Adv Exp Med Biol 428, 181-7 (1997).
[CrossRef] [PubMed]

Anal Biochem

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, "Performance comparison of several published tissue near-infrared spectroscopy algorithms," Anal Biochem, 227, 54-68 (1995).
[CrossRef] [PubMed]

Biochim Biophys Acta

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, "Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation," Biochim Biophys Acta 933, 184-92 (1988).
[CrossRef] [PubMed]

Brain Dev

K. von Siebenthal, J. Beran, M. Wolf, M. Keel, V. Dietz, S. Kundu, and H. U. Bucher, "Cyclical fluctuations in blood pressure, heart rate and cerebral blood volume in preterm infants," Brain Dev, 21, 529-34 (1999).
[CrossRef] [PubMed]

Clin Chem

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin," Clin Chem, 37, 1633-8 (1991).
[PubMed]

Early Hum Dev

K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, "Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy," Early Hum Dev 55, 229-36 (1999).
[CrossRef] [PubMed]

Electroencephalogr Clin Neurophysiol

H. Jasper, "Report of Committee on the Methods of Clinical Examination in Electroencephalography," Electroencephalogr Clin Neurophysiol, 10, 370-375 (1958).
[CrossRef]

Exp Brain Res

W. N. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari, "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot," Exp Brain Res 129, 457-61 (1999).
[CrossRef] [PubMed]

J Appl Physiol

H. Obrig, C. Hirth, J. G. Junge-Hulsing, C. Doge, T. Wolf, U. Dirnagl, and A. Villringer, "Cerebral oxygenation changes in response to motor stimulation," J Appl Physiol 81, 1174-83 (1996).
[PubMed]

Jpn J Physiol

I. Tasaki. �??Rapid structural changes in nerve fibers and cells associated with their excitation processes,�?? Jpn J Physiol 49, 125-38 (1999)
[CrossRef] [PubMed]

Neuroimage

M. A. Franceschini, and D. A. Boas. �??Noninvasive measurement of neuronal activity with near-infrared optical imaging.�?? Neuroimage 21(1), 372-386 (2004).
[CrossRef]

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, "Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study," Neuroimage 16, 704-12 (2002).
[CrossRef] [PubMed]

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman- Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, "Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI," Neuroimage 6, 168-80 (1997).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in motor cortex," Neuroimage, 17, 1868-75 (2002).
[CrossRef] [PubMed]

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl, and A. Villringer, "Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults," Neuroimage 12, 623-39 (2000).
[CrossRef] [PubMed]

P. Wobst, R. Wenzel, M. Kohl, H. Obrig, and A. Villringer, "Linear aspects of changes in deoxygenated hemoglobin concentration and cytochrome oxidase oxidation during brain activation," Neuroimage 13, 520-30 (2001).
[CrossRef] [PubMed]

Neuroreport

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Muhlnickel, H. Flor, U. Dirnagl, and A.Villringer, "Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy," Neuroreport 7, 1977-81 (1996).
[CrossRef] [PubMed]

Neurosci Lett

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer. �??Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head.�?? Neurosci Lett 15, 105-108 (2000).
[CrossRef]

Pediatr Res

M. Bartocci, J. Winberg, C. Ruggiero, L. L. Bergqvist, G. Serra, and H. Lagercrantz, "Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study," Pediatr Res 48, 18-23 (2000).
[CrossRef] [PubMed]

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, "Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates," Pediatr Res 49, 213-9 (2001).
[CrossRef] [PubMed]

J. H. Meek, M. Firbank, C. E. Elwell, J. Atkinson, O. Braddick, and J. S. Wyatt, "Regional hemodynamic responses to visual stimulation in awake infants," Pediatr Res 43, 840-3 (1998).
[CrossRef] [PubMed]

Psychophysiology

M. Wolf, U. Wolf U, J. H. Choi, V. Toronov, L. A. Paunescu, A. Michalos, and E. Gratton. �??Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry.�?? Psychophysiology 40(4), 521-528 (2003).
[CrossRef]

Science

F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-7 (1977).
[CrossRef] [PubMed]

Trends Neurosci

A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci 20, 435-42 (1997).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MOV (869 KB)     
» Media 2: MOV (984 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The block diagram shows the data acquisition unit, the stimulation unit, and the brain mapping sensors. The amplified analog signals from the brain mapping sensors are filtered and digitized. The data acquisition processor controls the measurement by switching the stimuli devices and selecting the photodiode — LED pairs of each sensor in a time multiplexed fashion. The communication processor transfers the acquired data to the PC-notebook. Both devices use Linux as an operating system.

Fig. 2.
Fig. 2.

Data are sampled in a time multiplexed fashion. The LEDs are switched on and off in a sequence which is predefined in a device initialization script.

Fig. 3.
Fig. 3.

Arterial occlusions were performed on the left arm of a subject at 1, 5, 9, and 13 minutes as indicated by the black bars. During the occlusion, the oxyhemoglobin (O2Hb) concentration decreases and the deoxyhemoglobin (HHb) concentration increases. The magnitude of the concentration changes is similar for both instruments, although the trace is much noisier for the NIRO-300. Both devices had a time resolution of 2s in this setting. (MCP II (top), NIRO-300 (bottom))

Fig. 4.
Fig. 4.

Finger tapping exercises were performed from second 10 to 30 (dotted box). The first (sensors 1–4) and the second column (sensor 5–8) measured over left and right hemisphere respectively before, during, and after left hand finger tapping. The third (sensors 1–4) and fourth column (sensor 5–8) show the left and right hemisphere during right hand finger tapping. An activation typically consists of an increase in oxyhemoglobin (O2Hb) concentration and of a decrease in deoxyhemoglobin (HHb) concentration. The higher O2 consumption in the activated area is immediately overcompensated by an increase in blood flow, which leads to the observed pattern. Both hands showed a stronger contralateral activation on the motor cortex hemisphere. The ordinates are scaled to µmol/l.

Fig. 5.
Fig. 5.

Tactile stimulation was performed from second 5 to 25. An activation typically consists of an increase in oxyhemoglobin (O2Hb) concentration and of a decrease in deoxyhemoglobin (HHb) concentration. The higher O2 consumption in the activated area is immediately overcompensated by an increase in blood flow, which leads to the observed pattern. Only the contra-lateral hemisphere (right column) showed a strong activation on the somatosensory cortex. a) (Top) The color palettes are scaled to +/-0.55µmol/l (size of the videos is 1.1MB each) [Media 1, Media 2]. b) (Bottom) The time traces are shown below.

Tables (3)

Tables Icon

Table 1. Warm and Cold Start drift

Tables Icon

Table 2. Instrument Noise

Tables Icon

Table 3. Instrument Comparison

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 e α · c · d · DPF + G
I ( λ ) = I 0 ( λ ) e α ( λ ) · c · d · DPF ( λ ) + G
I = 1 Δ λ λ I ( λ ) d λ
ADC LedOn ADC LedOff =
λ S Det ( λ ) I 0 ( λ ) e α ( λ ) · c · d · DPF ( λ ) + G d λ
S Det ( λ ) I 0 ( λ ) = I ̂ 0 2 π σ e ( λ λ 0 ) 2 2 σ 2 = I ̂ 0 · Γ ( λ )
ADC LedOn ADC LedOff =
I ̂ 0 λ Γ ( λ ) · e α ( λ ) · c · d · DPF ( λ ) + G d λ
h α , λ 0 ( c ) : = ln ( λ Γ ( λ ) e α ( λ ) · c · d · DPF ( λ ) d λ )
ADC ld : = ln ( ADC LedOn ADC LedOff )
ADC ld = ln ( I ̂ 0 ) + G + h α , λ 0 ( c )
h α 1 , α 2 , λ 0 ( c 1 , c 2 ) = ln ( λ Γ ( λ ) e ( α 1 ( λ ) · c 1 + α 2 ( λ ) · c 2 ) · d · DPF ( λ ) d λ )
h α 1 , α 2 , λ 0 ( c 1 , c 2 ) h α 1 , α 2 , λ 0 ( c 10 , c 20 )
+ ( c 1 c 10 ) c 1 h α 1 , α 2 , λ 0 ( c 1 , c 2 ) c 1 = c 10 , c 2 = c 20
+ ( c 2 c 20 ) c 2 h α 1 , α 2 , λ 0 ( c 1 , c 2 ) c 1 = c 10 , c 2 = c 20
Δ ADC ld ( t ) = ADC ld ( t ) ADC ld ( t 0 )
= ln ( I 0 ) + G + h α , λ 0 ( c ( t ) ) ln ( I 0 ) G h α , λ 0 ( c ( t 0 ) )
Δ ADC ld ( t ) = h α , λ 0 ( c ( t ) ) h α , λ 0 ( c ( t 0 ) )
H = [ h α HHb , α O 2 Hb, λ 0 = 730 nm ( c 1 , c 2 ) c 1 c 1 = c 10 c 2 = c 20 , h α HHb , α O 2 Hb λ 0 = 730 nm , ( c 1 , c 2 ) c 2 c 1 = c 10 c 2 = c 20 , h α HHb , α O 2 Hb λ 0 = 770 nm , ( c 1 , c 2 ) c 1 c 1 = c 10 c 2 = c 20 , h α HHb , α O 2 Hb λ 0 = 770 nm ( c 1 , c 2 ) c 2 c 1 = c 10 c 2 = c 20 , h α HHb , α O 2 Hb λ 0 = 805 nm , ( c 1 , c 2 ) c 1 c 1 = c 10 c 2 = c 20 , h α HHb , α O 2 Hb λ 0 = 805 nm ( c 1 , c 2 ) c 2 c 1 = c 10 c 2 = c 20 , ]
[ Δ ADC ld , 730 nm ( t ) Δ ADC ld , 770 nm ( t ) Δ ADC ld , 805 nm ( t ) ] = H [ Δ c HHb Δ c O 2 Hb ]
[ Δ c HHb Δ c O 2 HHb ] = ( H T H ) 1 H T [ Δ ADC ld , 730 nm ( t ) Δ ADC ld , 770 nm ( t ) Δ ADC ld , 805 nm ( t ) ]

Metrics