Abstract

Enhanced polarization-sensitive optical coherence tomography (EPS-OCT) is a noninvasive cross-sectional imaging technique capable of quantifying with high sensitivity the optically anisotropic properties of fibrous tissues. We present a method to measure the depth-resolved optic axis orientations in superficial and deep regions of multiple-layered form-birefringent tissue. Additionally, the bulk-optic EPS-OCT instrument provides anatomical fiber direction referenced absolutely to the laboratory frame, in contrast with fiber-based PS-OCT instruments which provide relative optic axis orientation measurements. Results presented on ex vivo murine tail tendon and porcine annulus fibrosis indicate that the method is capable of characterizing depth-resolved fiber direction [θ(z)], form-birefringence [Δn(z)], and form-biattenuance [Δχ(z)] for at least 10 successive lamellae and a depth of 0.52 mm into the intervertebral disc. Noninvasive assessment of optic axis orientation by EPS-OCT provides increased contrast in images of multiple-layered media and may improve the understanding of fibrous tissue ultrastructure and the diseases or traumas that affect fibrous tissues.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)

Nate J. Kemp, Haitham N. Zaatari, Jesung Park, H. Grady Rylander III, and Thomas E. Milner
Opt. Express 13(12) 4611-4628 (2005)

Conical scan polarization-sensitive optical coherence tomography

Zenghai Lu, Deepa Kasaragod, and Stephen J Matcher
Biomed. Opt. Express 5(3) 752-762 (2014)

Quantification of collagen fiber organization using three-dimensional Fourier transform-second-harmonic generation imaging

Tung Yuen Lau, Raghu Ambekar, and Kimani C. Toussaint
Opt. Express 20(19) 21821-21832 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [Crossref] [PubMed]
  2. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13, 4612–4629 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612
  3. O. Wiener, “Die Theorie des Mischkorpers fur das Feld der stationaren Stromung,” Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509–604 (1912).
  4. R. Oldenbourg and T. Ruiz, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195–205 (1989).
    [Crossref] [PubMed]
  5. C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780.
    [Crossref] [PubMed]
  6. J. Zhang, S. Guo, W. Jung, J. S. Nelson, and Z. Chen, “Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Opt. Express 11, 3262–3270 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3262.
    [Crossref] [PubMed]
  7. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
    [Crossref] [PubMed]
  8. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
    [Crossref] [PubMed]
  9. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
    [Crossref]
  10. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12, 3236–3244 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236.
    [Crossref] [PubMed]
  11. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
    [Crossref] [PubMed]
  12. M. Pircher, E. Goetzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.
    [Crossref] [PubMed]
  13. M. Todorovic, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29, 2402–2404 (2004).
    [Crossref] [PubMed]
  14. S. Guo, J. Zhang, J. S. Nelson, and Z. Chen, “Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 29, 2025–2027 (2004).
    [Crossref] [PubMed]
  15. N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, “High sensitivity determination of birefringence in turbid media using enhanced polarization-sensitive OCT,” J. Opt. Soc. Am. A 22, 552–560 (2005).
    [Crossref]
  16. W. Drexler, D. Stamper, and C. Jesser and et al., “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol (Canada) 28, 1311–1318 (2001).
  17. S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
    [Crossref] [PubMed]
  18. F. Marchand and A. M. Ahmed, “Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus,” Spine 15, 402–410 (1990).
    [Crossref] [PubMed]
  19. H. Inoue, “Three-dimensional architecture of lumbar intervertebral discs,” Spine 6, 139–146 (1981).
    [Crossref] [PubMed]
  20. http://www.uphs.upenn.edu/orl/research/bioengineering/disc.htm, “Mechanics of the human annulus fibrosis of the intervertebral disc,” McKay Orthopaedic Research Laboratory (2004).
  21. B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
    [Crossref] [PubMed]
  22. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003).
    [Crossref] [PubMed]
  23. V. J. James, L. Delbridge, S. V. McLennan, and D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
    [Crossref] [PubMed]
  24. B. Eyden and M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electon microscopy,” Micron 32, 287–300 (2001).
    [Crossref]
  25. T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen, and M. Jarvinen, “Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study,” Journal of Muscle Research and Cell Motility 23, 245–254 (2002).
    [Crossref] [PubMed]
  26. S. Osaki, M. Yamada, A. Takakusu, and K. Murakami, “A new approach to collagen fiber orientation in cow skin by the microwave method,” Cell. Mol. Biol. 39, 673–680 (1993).
    [PubMed]
  27. S. Fine and W. P. Hansen, “Optical second harmonic generation in biological tissues,” Appl. Opt. 10, 2350–2353 (1971).
    [Crossref] [PubMed]
  28. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
    [Crossref] [PubMed]
  29. P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
    [Crossref]
  30. T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004).
    [Crossref] [PubMed]

2005 (2)

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13, 4612–4629 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612

N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, “High sensitivity determination of birefringence in turbid media using enhanced polarization-sensitive OCT,” J. Opt. Soc. Am. A 22, 552–560 (2005).
[Crossref]

2004 (8)

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12, 3236–3244 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236.
[Crossref] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
[Crossref] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.
[Crossref] [PubMed]

M. Todorovic, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29, 2402–2404 (2004).
[Crossref] [PubMed]

S. Guo, J. Zhang, J. S. Nelson, and Z. Chen, “Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 29, 2025–2027 (2004).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[Crossref] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004).
[Crossref] [PubMed]

2003 (2)

2002 (4)

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[Crossref] [PubMed]

S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
[Crossref]

T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen, and M. Jarvinen, “Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study,” Journal of Muscle Research and Cell Motility 23, 245–254 (2002).
[Crossref] [PubMed]

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

2001 (5)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
[Crossref] [PubMed]

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

B. Eyden and M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electon microscopy,” Micron 32, 287–300 (2001).
[Crossref]

C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780.
[Crossref] [PubMed]

W. Drexler, D. Stamper, and C. Jesser and et al., “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol (Canada) 28, 1311–1318 (2001).

1997 (1)

1993 (1)

S. Osaki, M. Yamada, A. Takakusu, and K. Murakami, “A new approach to collagen fiber orientation in cow skin by the microwave method,” Cell. Mol. Biol. 39, 673–680 (1993).
[PubMed]

1991 (1)

V. J. James, L. Delbridge, S. V. McLennan, and D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[Crossref] [PubMed]

1990 (1)

F. Marchand and A. M. Ahmed, “Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus,” Spine 15, 402–410 (1990).
[Crossref] [PubMed]

1989 (1)

R. Oldenbourg and T. Ruiz, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195–205 (1989).
[Crossref] [PubMed]

1981 (1)

H. Inoue, “Three-dimensional architecture of lumbar intervertebral discs,” Spine 6, 139–146 (1981).
[Crossref] [PubMed]

1971 (1)

1912 (1)

O. Wiener, “Die Theorie des Mischkorpers fur das Feld der stationaren Stromung,” Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509–604 (1912).

Ahmed, A. M.

F. Marchand and A. M. Ahmed, “Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus,” Spine 15, 402–410 (1990).
[Crossref] [PubMed]

Araki, T.

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
[Crossref] [PubMed]

Cense, B.

Chen, T.

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

Chen, Z.

Da Silva, L. B.

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

de Boer, J. F.

Delbridge, L.

V. J. James, L. Delbridge, S. V. McLennan, and D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, D. Stamper, and C. Jesser and et al., “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol (Canada) 28, 1311–1318 (2001).

Eyden, B.

B. Eyden and M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electon microscopy,” Micron 32, 287–300 (2001).
[Crossref]

Fercher, A. F.

Findl, O.

Fine, S.

Gangnus, S. V.

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

Goetzinger, E.

Gotzinger, E.

Guo, S.

Hansen, W. P.

Hitzenberger, C. K.

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
[Crossref] [PubMed]

Inoue, H.

H. Inoue, “Three-dimensional architecture of lumbar intervertebral discs,” Spine 6, 139–146 (1981).
[Crossref] [PubMed]

James, V. J.

V. J. James, L. Delbridge, S. V. McLennan, and D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[Crossref] [PubMed]

Jarvinen, M.

T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen, and M. Jarvinen, “Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study,” Journal of Muscle Research and Cell Motility 23, 245–254 (2002).
[Crossref] [PubMed]

Jarvinen, T. A.

T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen, and M. Jarvinen, “Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study,” Journal of Muscle Research and Cell Motility 23, 245–254 (2002).
[Crossref] [PubMed]

Jarvinen, T. L.

T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen, and M. Jarvinen, “Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study,” Journal of Muscle Research and Cell Motility 23, 245–254 (2002).
[Crossref] [PubMed]

Jesser, C.

W. Drexler, D. Stamper, and C. Jesser and et al., “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol (Canada) 28, 1311–1318 (2001).

Jiao, S.

Jozsa, L.

T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen, and M. Jarvinen, “Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study,” Journal of Muscle Research and Cell Motility 23, 245–254 (2002).
[Crossref] [PubMed]

Jung, W.

Kannus, P.

T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen, and M. Jarvinen, “Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study,” Journal of Muscle Research and Cell Motility 23, 245–254 (2002).
[Crossref] [PubMed]

Kemp, N. J.

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13, 4612–4629 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612

N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, “High sensitivity determination of birefringence in turbid media using enhanced polarization-sensitive OCT,” J. Opt. Soc. Am. A 22, 552–560 (2005).
[Crossref]

Kim, B.-M.

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Leitgeb, R.

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
[Crossref] [PubMed]

Marchand, F.

F. Marchand and A. M. Ahmed, “Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus,” Spine 15, 402–410 (1990).
[Crossref] [PubMed]

Matcher, S. J.

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

McLennan, S. V.

V. J. James, L. Delbridge, S. V. McLennan, and D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[Crossref] [PubMed]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
[Crossref] [PubMed]

Milner, T. E.

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
[Crossref] [PubMed]

Murakami, K.

S. Osaki, M. Yamada, A. Takakusu, and K. Murakami, “A new approach to collagen fiber orientation in cow skin by the microwave method,” Cell. Mol. Biol. 39, 673–680 (1993).
[PubMed]

Nelson, J. S.

Oldenbourg, R.

R. Oldenbourg and T. Ruiz, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195–205 (1989).
[Crossref] [PubMed]

Osaki, S.

S. Osaki, M. Yamada, A. Takakusu, and K. Murakami, “A new approach to collagen fiber orientation in cow skin by the microwave method,” Cell. Mol. Biol. 39, 673–680 (1993).
[PubMed]

Park, B. H.

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[Crossref] [PubMed]

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

Park, J.

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13, 4612–4629 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612

N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, “High sensitivity determination of birefringence in turbid media using enhanced polarization-sensitive OCT,” J. Opt. Soc. Am. A 22, 552–560 (2005).
[Crossref]

Pierce, M. C.

Pircher, M.

Reiser, K. M.

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Rubenchik, A. M.

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Ruiz, T.

R. Oldenbourg and T. Ruiz, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195–205 (1989).
[Crossref] [PubMed]

Rylander, H. G.

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13, 4612–4629 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612

N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, “High sensitivity determination of birefringence in turbid media using enhanced polarization-sensitive OCT,” J. Opt. Soc. Am. A 22, 552–560 (2005).
[Crossref]

Sattmann, H.

Saxer, C.

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

Srinivas, S. M.

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

Stamper, D.

W. Drexler, D. Stamper, and C. Jesser and et al., “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol (Canada) 28, 1311–1318 (2001).

Sticker, M.

Stoica, G.

Stroller, P.

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Takakusu, A.

S. Osaki, M. Yamada, A. Takakusu, and K. Murakami, “A new approach to collagen fiber orientation in cow skin by the microwave method,” Cell. Mol. Biol. 39, 673–680 (1993).
[PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
[Crossref] [PubMed]

Todorovic, M.

Tohno, Y.

Tzaphlidou, M.

B. Eyden and M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electon microscopy,” Micron 32, 287–300 (2001).
[Crossref]

van Gemert, M. J. C.

Wang, L. V.

Wiener, O.

O. Wiener, “Die Theorie des Mischkorpers fur das Feld der stationaren Stromung,” Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509–604 (1912).

Winlove, C. P.

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

Yamada, M.

S. Osaki, M. Yamada, A. Takakusu, and K. Murakami, “A new approach to collagen fiber orientation in cow skin by the microwave method,” Cell. Mol. Biol. 39, 673–680 (1993).
[PubMed]

Yasui, T.

Yu, W.

Yue, D. K.

V. J. James, L. Delbridge, S. V. McLennan, and D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[Crossref] [PubMed]

Zaatari, H. N.

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13, 4612–4629 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612

N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, “High sensitivity determination of birefringence in turbid media using enhanced polarization-sensitive OCT,” J. Opt. Soc. Am. A 22, 552–560 (2005).
[Crossref]

Zhang, J.

Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. (1)

O. Wiener, “Die Theorie des Mischkorpers fur das Feld der stationaren Stromung,” Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509–604 (1912).

Appl. Opt. (2)

Biophys. J. (2)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2001).
[Crossref] [PubMed]

R. Oldenbourg and T. Ruiz, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195–205 (1989).
[Crossref] [PubMed]

Cell. Mol. Biol. (1)

S. Osaki, M. Yamada, A. Takakusu, and K. Murakami, “A new approach to collagen fiber orientation in cow skin by the microwave method,” Cell. Mol. Biol. 39, 673–680 (1993).
[PubMed]

Diabetes (1)

V. J. James, L. Delbridge, S. V. McLennan, and D. K. Yue, “Use of x-ray diffraction in study of human diabetic and aging collagen,” Diabetes 40, 391–394 (1991).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Rheumatol (Canada) (1)

W. Drexler, D. Stamper, and C. Jesser and et al., “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol (Canada) 28, 1311–1318 (2001).

Journal of Muscle Research and Cell Motility (1)

T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen, and M. Jarvinen, “Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study,” Journal of Muscle Research and Cell Motility 23, 245–254 (2002).
[Crossref] [PubMed]

Micron (1)

B. Eyden and M. Tzaphlidou, “Structural variations of collagen in normal and pathological tissues: role of electon microscopy,” Micron 32, 287–300 (2001).
[Crossref]

Opt. Express (5)

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12, 3236–3244 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236.
[Crossref] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.
[Crossref] [PubMed]

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13, 4612–4629 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612

C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780.
[Crossref] [PubMed]

J. Zhang, S. Guo, W. Jung, J. S. Nelson, and Z. Chen, “Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Opt. Express 11, 3262–3270 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3262.
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Med. Biol. (2)

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
[Crossref] [PubMed]

S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1295–1306 (2004).
[Crossref] [PubMed]

Spine (2)

F. Marchand and A. M. Ahmed, “Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus,” Spine 15, 402–410 (1990).
[Crossref] [PubMed]

H. Inoue, “Three-dimensional architecture of lumbar intervertebral discs,” Spine 6, 139–146 (1981).
[Crossref] [PubMed]

Other (1)

http://www.uphs.upenn.edu/orl/research/bioengineering/disc.htm, “Mechanics of the human annulus fibrosis of the intervertebral disc,” McKay Orthopaedic Research Laboratory (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of intervertebral disc and annulus fibrosis showing alternating fiber directions in the laboratory frame (H and V) [20], the incident beam, and scan location (dashed red line). AF: annulus fibrosis; NP: nucleus pulposis.

Fig. 2.
Fig. 2.

Photograph of the crossed tendon specimen showing orientation in the laboratory frame (H and V) and three locations imaged using EPS-OCT.

Fig. 3.
Fig. 3.

Orientations of the top (blue) and bottom (red) fascicle are measured with respect to the horizontal (green) in this digital photograph using a software-based angle dimensioning tool. Numbered dots (cyan) indicate the locations of EPS-OCT imaging.

Fig. 4.
Fig. 4.

(a) OCT intensity B-scan image and corresponding (b) depth-resolved anatomical fiber direction and (c) birefringence images of ex vivo porcine annulus fibrosis (K=11). Image dimensions are 0.52 mm deep by 0.25 mm wide.

Fig. 5.
Fig. 5.

Mean and standard deviation in depth-resolved anatomical fiber direction (θk ) for each lamella (k) in ex vivo porcine annulus fibrosis. As expected, an approximate 90° change in fiber direction is apparent between successive layers.

Fig. 6.
Fig. 6.

Mean and standard deviation in birefringence (Δnk , gray) and biattenuance (Δχk , white) for each lamella (k) in ex vivo porcine annulus fibrosis.

Tables (1)

Tables Icon

Table 1. Fiber directions (θk ) in degrees (°) measured counterclockwise with respect to the horizontal laboratory frame.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J s ( δ , ε , θ ) = J rot ( θ ) J ret ( δ ) J att ( ε ) J rot ( θ )
= [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] [ e i δ 2 0 0 e i δ 2 ] [ e ε 2 0 0 e ε 2 ] [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] ,
θ = sgn ( β u ) cos 1 ( β ̂ · q ̂ ) 2 ,
E dp _ out ( k ) = J s ( 1 ) T J s ( 2 ) T J s ( k 1 ) T J s ( k ) T J s ( k ) J s ( k 1 ) J s ( 2 ) J s ( 1 ) E in .
E dp _ out ( k ) = J c T J s ( 1 ) T J s ( k 1 ) T J s ( k ) T J s ( k ) J s ( k 1 ) J s ( 1 ) J c E in .

Metrics