Abstract

Enhanced polarization-sensitive optical coherence tomography (EPS-OCT) is a noninvasive cross-sectional imaging technique capable of quantifying with high sensitivity the optically anisotropic properties of fibrous tissues. We present a method to measure the depth-resolved optic axis orientations in superficial and deep regions of multiple-layered form-birefringent tissue. Additionally, the bulk-optic EPS-OCT instrument provides anatomical fiber direction referenced absolutely to the laboratory frame, in contrast with fiber-based PS-OCT instruments which provide relative optic axis orientation measurements. Results presented on ex vivo murine tail tendon and porcine annulus fibrosis indicate that the method iscapable of characterizing depth-resolved fiber direction [ θ(z)], form-birefringence [�?n(z)], and form-biattenuance [�? �?(z)] for at least 10 successive lamellae and a depth of 0.52 mm into the intervertebral disc. Noninvasive assessment of optic axis orientation by EPS-OCT provides increased contrast in images of multiple-layered media and may improve the understanding of fibrous tissue ultrastructure and the diseases or traumas that affect fibrous tissues.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. J. F. de Boer, T. E. Milner, M. J. C. van Gemert and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
  2. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander and T. E. Milner, " Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)," Opt. Express 13, 4612 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612</a>
  3. O. Wiener, "Die Theorie des Mischkorpers fur das Feld der stationaren Stromung," Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509-604 (1912).
  4. R. Oldenbourg and T. Ruiz, "Birefringence of macromolecules: Wiener's theory revisited, with applications to DNA and tobacco mosaic virus," Biophys. J. 56, 195-205 (1989).
  5. C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780</a>
  6. J. Zhang, S. Guo, W. Jung, J. S. Nelson and Z. Chen, "Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers," Opt. Express 11, 3262-3270 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3262.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3262.</a>
  7. B. H. Park, M. C. Pierce, B. Cense and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
    [CrossRef]
  8. S. Jiao and L. V. Wang, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
    [CrossRef]
  9. S. Jiao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt. Lett. 27, 101-103 (2002).
  10. M. Pircher, E. Goetzinger, R. Leitgeb and C. K. Hitzenberger, "Three dimensional polarization sensitive OCT of human skin in vivo," Opt. Express 12, 3236-3244 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236</a>
    [CrossRef]
  11. M. Pircher, E. Goetzinger, R. Leitgeb and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
    [CrossRef]
  12. M. Pircher, E. Goetzinger, R. Leitgeb, H. Sattmann, O. Findl and C. K. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12, 5940-5951 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940</a>
    [CrossRef]
  13. M. Todorovic, S. Jiao, L. V. Wang and G. Stoica, "Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography," Opt. Lett. 29, 2402-2404 (2004).
    [CrossRef]
  14. S. Guo, J. Zhang, J. S. Nelson and Z. Chen, "Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography," Opt. Lett. 29, 2025-2027 (2004).
    [CrossRef]
  15. N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander and T. E. Milner, "High sensitivity determination of birefringence in turbid media using enhanced polarization-sensitive OCT," J. Opt. Soc. Am. A 22, 552-560 (2005).
    [CrossRef]
  16. W. Drexler, D. Stamper, C. Jesser and et al., "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis," J. Rheumatol (Canada) 28, 1311-1318 (2001).
  17. S. J. Matcher, C. P. Winlove and S. V. Gangnus, "The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography," Phys. Med. Biol. 49, 1295-1306 (2004).
  18. F. Marchand and A. M. Ahmed, "Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus," Spine 15, 402-410 (1990).
    [CrossRef]
  19. H. Inoue, "Three-dimensional architecture of lumbar intervertebral discs," Spine 6, 139-146 (1981).
    [CrossRef]
  20. <a href="http://www.uphs.upenn.edu/orl/research/bioengineering/disc.htm">http://www.uphs.upenn.edu/orl/research/bioengineering/disc.htm</a>, "Mechanics of the human annulus fibrosis of the intervertebral disc," McKay Orthopaedic Research Laboratory (2004).
  21. B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson and J. F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474-479 (2001).
    [CrossRef]
  22. S. Jiao, W. Yu, G. Stoica and L. V. Wang, "Optical-fiber-based Mueller optical coherence tomography," Opt. Lett. 28, 1206-1208 (2003).
  23. V. J. James, L. Delbridge, S. V. McLennan and D. K. Yue, "Use of x-ray diffraction in study of human diabetic and aging collagen," Diabetes 40, 391-394 (1991).
    [CrossRef]
  24. B. Eyden and M. Tzaphlidou, "Structural variations of collagen in normal and pathological tissues: role of electon microscopy," Micron 32, 287-300 (2001).
    [CrossRef]
  25. T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen and M. Jarvinen, "Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study," Journal of Muscle Research and Cell Motility 23, 245-254 (2002).
  26. S. Osaki, M. Yamada, A. Takakusu and K. Murakami, "A new approach to collagen fiber orientation in cow skin by the microwave method," Cell. Mol. Biol. 39, 673-680 (1993).
  27. S. Fine and W. P. Hansen, "Optical second harmonic generation in biological tissues," Appl. Opt. 10, 2350-2353 (1971).
  28. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone and W. A. Mohler, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 82, 493-508 (2001).
  29. P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
    [CrossRef]
  30. T. Yasui, Y. Tohno and T. Araki, "Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004).
    [CrossRef]

Abh. Math.-Phys. Klasse Koniglich Sachsi (1)

O. Wiener, "Die Theorie des Mischkorpers fur das Feld der stationaren Stromung," Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509-604 (1912).

Appl. Opt. (2)

Biophys. J (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone and W. A. Mohler, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 82, 493-508 (2001).

Biophys. J. (1)

R. Oldenbourg and T. Ruiz, "Birefringence of macromolecules: Wiener's theory revisited, with applications to DNA and tobacco mosaic virus," Biophys. J. 56, 195-205 (1989).

Cell. Mol. Biol. (1)

S. Osaki, M. Yamada, A. Takakusu and K. Murakami, "A new approach to collagen fiber orientation in cow skin by the microwave method," Cell. Mol. Biol. 39, 673-680 (1993).

Diabetes (1)

V. J. James, L. Delbridge, S. V. McLennan and D. K. Yue, "Use of x-ray diffraction in study of human diabetic and aging collagen," Diabetes 40, 391-394 (1991).
[CrossRef]

J. Biomed. Opt. (3)

B. H. Park, C. Saxer, T. Chen, S. M. Srinivas, J. S. Nelson and J. F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef]

P. Stroller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef]

S. Jiao and L. V. Wang, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
[CrossRef]

J. Muscle Research and Cell Motility (1)

T. A. Jarvinen, L. Jozsa, P. Kannus, T. L. Jarvinen and M. Jarvinen, "Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study," Journal of Muscle Research and Cell Motility 23, 245-254 (2002).

J. Opt. Soc. Am. A (1)

J. Rheumatol. (Canada) (1)

W. Drexler, D. Stamper, C. Jesser and et al., "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis," J. Rheumatol (Canada) 28, 1311-1318 (2001).

Micron (1)

B. Eyden and M. Tzaphlidou, "Structural variations of collagen in normal and pathological tissues: role of electon microscopy," Micron 32, 287-300 (2001).
[CrossRef]

Opt. Express (5)

M. Pircher, E. Goetzinger, R. Leitgeb and C. K. Hitzenberger, "Three dimensional polarization sensitive OCT of human skin in vivo," Opt. Express 12, 3236-3244 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236</a>
[CrossRef]

M. Pircher, E. Goetzinger, R. Leitgeb, H. Sattmann, O. Findl and C. K. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12, 5940-5951 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940</a>
[CrossRef]

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander and T. E. Milner, " Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)," Opt. Express 13, 4612 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4612</a>

C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780</a>

J. Zhang, S. Guo, W. Jung, J. S. Nelson and Z. Chen, "Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers," Opt. Express 11, 3262-3270 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3262.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3262.</a>

Opt. Lett. (6)

Phys. Med. Biol. (1)

M. Pircher, E. Goetzinger, R. Leitgeb and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef]

Pjys. Med. Biol. (1)

S. J. Matcher, C. P. Winlove and S. V. Gangnus, "The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography," Phys. Med. Biol. 49, 1295-1306 (2004).

Spine (2)

F. Marchand and A. M. Ahmed, "Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus," Spine 15, 402-410 (1990).
[CrossRef]

H. Inoue, "Three-dimensional architecture of lumbar intervertebral discs," Spine 6, 139-146 (1981).
[CrossRef]

Other (1)

<a href="http://www.uphs.upenn.edu/orl/research/bioengineering/disc.htm">http://www.uphs.upenn.edu/orl/research/bioengineering/disc.htm</a>, "Mechanics of the human annulus fibrosis of the intervertebral disc," McKay Orthopaedic Research Laboratory (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics