Abstract

Modeling of macro-bend losses for single mode fibers with multiple cladding or coating layers is presented. Macro-bend losses for standard single mode fibers (SMF28) are investigated theoretically and experimentally, showing that the inner primary coating layer of SMF28 has a significant impact on the bend losses and most of the radiation field is absorbed in the inner primary coating layer of SMF28. The agreement between theoretical calculations and experimental measurements suggests that the so-called elastooptical correction in modeling is not required for SMF28.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. C. Gauthier and C. Ross, �??Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor,�?? Appl. Opt. 36, 6264-6273 (1997).
    [CrossRef]
  2. D. Marcuse, �??Curvature loss formula for optical fibers,�?? J. Opt. Soc. Am. 66, 216-220 (1976).
    [CrossRef]
  3. D. Marcuse, �??Bend loss of slab and fiber modes computed with diffraction theory,�?? IEEE J. Quantum Electron. 29, 2957-2961 (1993).
    [CrossRef]
  4. C. Vassallo, �??Perturbation of an LP mode of an optical fiber by a quasi-degenerate field: a simple formula,�?? Opt. & Quantum Electron. 17, 201-205 (1985).
    [CrossRef]
  5. I. Valiente and C. Vassallo, �??New formalism for bending losses in coated single-mode optical fibers,�?? Electron. Lett. 25, 1544-1545 (1989).
    [CrossRef]
  6. H. Renner, �??Bending losses of coated single-mode fibers: a simple approach,�?? J. Lightwave Technol. 10, 544-551 (1992).
    [CrossRef]
  7. L. Faustini and G. Martini, �??Bend loss in single-mode fibers, �?? J. Lightwave Technol. 15, 671-679 (1997).
    [CrossRef]
  8. A. J. Harris and P.F. Castle, �??Bend loss measurement on high numerical aperture single-mode fibers as function of wavelength and bend radius,�?? J. Lightwave Technol. 4, 34-40 (1986).
    [CrossRef]
  9. R. Morgan, J.S.Barton, P.G. Harper and J.D.C. Jones, �??Wavelength dependence of bending loss in mononmode optical fibers:effect of the fiber buffer coating, �?? Opt. Lett. 15, 947-949 (1990).
    [CrossRef] [PubMed]
  10. A. B. Shama, A. H. Al-Ani and S. J. Halme, �??Constant-curvature loss in monomode fibers: an experimental investigation, �?? Appl. Opt. 23, 3297-3301 (1984).
    [CrossRef]
  11. K. Nagano, S. Kawakami and S. Nishida, �??Change of the refractive index in an optical fiber due to external forces, �?? Appl. Opt. 17, 2080-2085 (1978).
    [CrossRef] [PubMed]

Appl. Opt.

Electron. Lett.

I. Valiente and C. Vassallo, �??New formalism for bending losses in coated single-mode optical fibers,�?? Electron. Lett. 25, 1544-1545 (1989).
[CrossRef]

IEEE J. Quantum Electron.

D. Marcuse, �??Bend loss of slab and fiber modes computed with diffraction theory,�?? IEEE J. Quantum Electron. 29, 2957-2961 (1993).
[CrossRef]

J. Lightwave Technol.

H. Renner, �??Bending losses of coated single-mode fibers: a simple approach,�?? J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

L. Faustini and G. Martini, �??Bend loss in single-mode fibers, �?? J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

A. J. Harris and P.F. Castle, �??Bend loss measurement on high numerical aperture single-mode fibers as function of wavelength and bend radius,�?? J. Lightwave Technol. 4, 34-40 (1986).
[CrossRef]

J. Opt. Soc. Am.

Opt. & Quantum Electron.

C. Vassallo, �??Perturbation of an LP mode of an optical fiber by a quasi-degenerate field: a simple formula,�?? Opt. & Quantum Electron. 17, 201-205 (1985).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

ross-section of a bent fiber with multiple cladding layers.

Fig. 2.
Fig. 2.

Experimental setup for measuring fiber bend loss

Fig. 3.
Fig. 3.

Measured bend losses for bending radius R=10.5 mm and bent length of 0.66 m.

Fig. 4.
Fig. 4.

Measured and calculated bend loss for different bending radii at wavelength a) 1500 nm and b) 1600 nm.

Fig. 5.
Fig. 5.

Calculated (with one-coating layer and with two-coating layers, respectively) and measured bend losses in wavelength range from 1500 nm to 1600 nm for a) for R=10 mm and b) R=9 mm.

Fig. 6.
Fig. 6.

Calculated (with and without elastooptical correction) and measured bend losses in wavelength range from 1500 nm to 1600 nm for a) for R=10 mm and b) R=9 mm.

Tables (1)

Tables Icon

Table 1. Parameters of SMF28 at wavelength 1550nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L s = 10 log 10 ( exp ( 2 α L ) ) = 8.686 α L
ψ q ( x , y ) = 1 2 π + [ D q ( ζ ) B i ( X q ) + H q ( ζ ) A i ( X q ) ] exp ( i ζ y ) d ζ
{ D q ( ζ ) B i [ X q ( x q , ζ ) ] + H q ( ζ ) A i [ X q ( x q , ζ ) ] = D q + 1 ( ζ ) B i [ X q + 1 ( z q , ζ ) ] + H q + 1 ( ζ ) A i [ X q + 1 ( z q , ζ ) ] D q ( ζ ) B ' i [ X q ( z q , ζ ) ] + H q ( ζ ) A ' i [ X q ( x q , ζ ) ] = D q + 1 ( ζ ) B ' i [ X q + 1 ( x q , ζ ) ] + H q + 1 ( ζ ) A ' i [ X q + 1 ( X q , ζ ) ] .
2 α = 2 κ 2 2 π β V 2 K 1 2 ( a γ ) Im ( H 1 ( ζ ) A i [ X 2 ( 0 , ζ ) ] d ζ )

Metrics