Abstract

This study intends to explore the underlying principle of the bi-phasic behavior of increases in oxygenated hemoglobin concentration that was observed in vivo from rat breast tumors during carbogen/oxygen inhalation. We have utilized the Finite Element Method (FEM) to simulate the effects of different blood flow rates, in several geometries, on the near infrared measurements. The results show clearly that co-existence of two blood flow velocities can result in a bi-phasic change in optical density, regardless of the orientation of vessels. This study supports our previous hypothesis that the bi-phasic tumor hemodynamic feature during carbogen inhalation results from a well-perfused and a poorly perfused region in the tumor vasculature.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vaupel, O. Thews, D. K. Kelleher, M. Höckel, “Current status of knowledge and critical issues in tumor oxygenation,” In: Hudetz, Bruley (eds), Oxygen Transport to Tissue XX, 591–602 (Plenum Press, New York, 1998).
  2. P. Vaupel, “Vascularization, blood flow, oxygenation, tissue pH, and bioenergetic status of human breast cancer,” In: Nemoto, LaManna (eds), Oxygen Transport to Tissue XVIII, 243–253 (Plenum Press, New York, 1997).
  3. P. Vaupel, “Oxygen transport in tumors: Characteristics and clinical implications,” Adv. Exp. Med. Biol., 388, 341–351 (1996).
    [CrossRef] [PubMed]
  4. R. H. Thomlinson, L. H. Gray, “The histological structure of some human lung cancers and the possible implications for radiotherapy,” Br. J. Cancer, 9, 539–549 (1955).
    [CrossRef] [PubMed]
  5. E. E. Schwartz, The biological basis of radiation therapy (Lippincott, Philadelphia, 1966).
  6. B. Teicher, J. Lazo, A. Sartorelli, “Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells,” Cancer Res., 41, 73–81 (1981).
    [PubMed]
  7. J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
    [CrossRef] [PubMed]
  8. P. Bergsjo, P. Kolstad, “Clinical trial with atmospheric oxygen breathing during radiotherapy of cancer of the cervix,” Scand. J. Clin. Lab. Invest. Suppl., 106, 167–171 (1968).
    [PubMed]
  9. H. D. Suit, N. Marshall, D. Woerner, “Oxygen, oxygen plus carbon dioxide, and radiation therapy of a mouse mammary carcinoma. Cancer,” Cancer, 30, 1154–1158 (1972).
    [CrossRef] [PubMed]
  10. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near-Infrared Spectroscopy,” Appl. Opt., 39, 5231–5243 (2000).
    [CrossRef]
  11. J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003).
    [CrossRef]
  12. Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt., 42, 2960–2967 (2003).
    [CrossRef] [PubMed]
  13. S. S. Kety, “The theory and applications of the exchange of inert gas at the lungs and tissue,” Pharmacol. Rev., 3, 1–41 (1951).
    [PubMed]
  14. A.H. Hielsher, S. L. Jacquest, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol., 40, 1957–1975 (1995).
    [CrossRef]
  15. R.A. Groenhuis, A.A. Ferwerda, J. J. T. Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt., 22, 2456–2462 (1983)
    [CrossRef] [PubMed]
  16. J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
    [CrossRef] [PubMed]
  17. M. E. Brevard, T. Q. Duong, J. A. King, C. F. Ferris, “Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions,” Magn. Res. Imaging., 21, 995–1001 (2003).
    [CrossRef]
  18. H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995).
    [CrossRef] [PubMed]
  19. Y. Gu, R. Mason, H. Liu, “Estimated fraction of tumor vascular blood contents sampled by near infrared spectroscopy and 19F magnetic resonance spectroscopy,” Optics Express, 13, 1724–1733 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1724
    [CrossRef] [PubMed]
  20. M. Xia, H. Liu, “A model of the hemodynamic response of tumor in rats with hyperoxic gas challenge”, Optical Tomography and Spectroscopy of Tissue VII, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE5693, in press (2005).
  21. D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
    [CrossRef] [PubMed]
  22. A. R. Padhani, A. Dzik-Jurasz, “Perfusion MR imaging of extracranial tumor angiogenesis,” Top. Magn. Reson. Imaging, 15, 41–57 (2004).
    [CrossRef] [PubMed]
  23. A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004).
    [CrossRef] [PubMed]
  24. E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002).
    [CrossRef] [PubMed]
  25. R.B. Buxton, E.C. Wong, L.R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med., 39, 855–864 (1998).
    [CrossRef] [PubMed]
  26. K. J. Friston, A. Mechelli, R. Turner, C. J. Price, “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,” NeuroImage, 12, 466–477 (2000).
    [CrossRef] [PubMed]
  27. A. Mechelli, C. J. Price, K. J. Friston, “Nonlinear Coupling between Evoked rCBF and BOLD Signals: A Simulation Study of Hemodynamic Responses,” NeuroImage, 14, 862–872 (2001).
    [CrossRef] [PubMed]
  28. Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
    [CrossRef] [PubMed]
  29. R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, 23, S220–S233 (2004).
    [CrossRef] [PubMed]
  30. K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
    [CrossRef]
  31. R. K. Jain, “Determinants of tumor blood flow: a review,” Cancer Res., 48, 2641–2658 (1988).
    [PubMed]
  32. R. K. Jain, “Barriers to drug delivery in solid tumors,” Sci. Am., 271, 58–65 (1994).
    [CrossRef] [PubMed]
  33. R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999).
    [CrossRef] [PubMed]
  34. Y. Song, A. Constantinescu, R.P. Mason, “Dynamic breast tumor oximetery: the development of prosgnostic radiology,” Technology in Cancer Research & Treatment, 1, 1–8 (2002).

2005

Y. Gu, R. Mason, H. Liu, “Estimated fraction of tumor vascular blood contents sampled by near infrared spectroscopy and 19F magnetic resonance spectroscopy,” Optics Express, 13, 1724–1733 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1724
[CrossRef] [PubMed]

2004

A. R. Padhani, A. Dzik-Jurasz, “Perfusion MR imaging of extracranial tumor angiogenesis,” Top. Magn. Reson. Imaging, 15, 41–57 (2004).
[CrossRef] [PubMed]

A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004).
[CrossRef] [PubMed]

R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, 23, S220–S233 (2004).
[CrossRef] [PubMed]

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

2003

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

M. E. Brevard, T. Q. Duong, J. A. King, C. F. Ferris, “Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions,” Magn. Res. Imaging., 21, 995–1001 (2003).
[CrossRef]

J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003).
[CrossRef]

Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt., 42, 2960–2967 (2003).
[CrossRef] [PubMed]

2002

Y. Song, A. Constantinescu, R.P. Mason, “Dynamic breast tumor oximetery: the development of prosgnostic radiology,” Technology in Cancer Research & Treatment, 1, 1–8 (2002).

E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002).
[CrossRef] [PubMed]

Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
[CrossRef] [PubMed]

2001

A. Mechelli, C. J. Price, K. J. Friston, “Nonlinear Coupling between Evoked rCBF and BOLD Signals: A Simulation Study of Hemodynamic Responses,” NeuroImage, 14, 862–872 (2001).
[CrossRef] [PubMed]

2000

K. J. Friston, A. Mechelli, R. Turner, C. J. Price, “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,” NeuroImage, 12, 466–477 (2000).
[CrossRef] [PubMed]

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near-Infrared Spectroscopy,” Appl. Opt., 39, 5231–5243 (2000).
[CrossRef]

1999

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999).
[CrossRef] [PubMed]

1998

R.B. Buxton, E.C. Wong, L.R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med., 39, 855–864 (1998).
[CrossRef] [PubMed]

1996

P. Vaupel, “Oxygen transport in tumors: Characteristics and clinical implications,” Adv. Exp. Med. Biol., 388, 341–351 (1996).
[CrossRef] [PubMed]

1995

A.H. Hielsher, S. L. Jacquest, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol., 40, 1957–1975 (1995).
[CrossRef]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995).
[CrossRef] [PubMed]

1994

R. K. Jain, “Barriers to drug delivery in solid tumors,” Sci. Am., 271, 58–65 (1994).
[CrossRef] [PubMed]

1991

J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
[CrossRef] [PubMed]

1988

R. K. Jain, “Determinants of tumor blood flow: a review,” Cancer Res., 48, 2641–2658 (1988).
[PubMed]

1983

1981

B. Teicher, J. Lazo, A. Sartorelli, “Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells,” Cancer Res., 41, 73–81 (1981).
[PubMed]

1972

H. D. Suit, N. Marshall, D. Woerner, “Oxygen, oxygen plus carbon dioxide, and radiation therapy of a mouse mammary carcinoma. Cancer,” Cancer, 30, 1154–1158 (1972).
[CrossRef] [PubMed]

1968

P. Bergsjo, P. Kolstad, “Clinical trial with atmospheric oxygen breathing during radiotherapy of cancer of the cervix,” Scand. J. Clin. Lab. Invest. Suppl., 106, 167–171 (1968).
[PubMed]

1955

R. H. Thomlinson, L. H. Gray, “The histological structure of some human lung cancers and the possible implications for radiotherapy,” Br. J. Cancer, 9, 539–549 (1955).
[CrossRef] [PubMed]

1951

S. S. Kety, “The theory and applications of the exchange of inert gas at the lungs and tissue,” Pharmacol. Rev., 3, 1–41 (1951).
[PubMed]

Absoulaev, G.S.

A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004).
[CrossRef] [PubMed]

Arnfield, M. R.

J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
[CrossRef] [PubMed]

Ayata, C.

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

Bergsjo, P.

P. Bergsjo, P. Kolstad, “Clinical trial with atmospheric oxygen breathing during radiotherapy of cancer of the cervix,” Scand. J. Clin. Lab. Invest. Suppl., 106, 167–171 (1968).
[PubMed]

Berwick, J.

Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
[CrossRef] [PubMed]

Bidani, A.

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

Bluestone, A. Y.

A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

Bosch, J. J. T.

Bourke, V. A.

Brevard, M. E.

M. E. Brevard, T. Q. Duong, J. A. King, C. F. Ferris, “Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions,” Magn. Res. Imaging., 21, 995–1001 (2003).
[CrossRef]

Buxton, R. B.

R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, 23, S220–S233 (2004).
[CrossRef] [PubMed]

Buxton, R.B.

R.B. Buxton, E.C. Wong, L.R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med., 39, 855–864 (1998).
[CrossRef] [PubMed]

Chance, B.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Chapman, J. D.

J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
[CrossRef] [PubMed]

Chau, R. I.

R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999).
[CrossRef] [PubMed]

Clark, J. W.

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

Constantinescu, A.

J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003).
[CrossRef]

Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt., 42, 2960–2967 (2003).
[CrossRef] [PubMed]

Y. Song, A. Constantinescu, R.P. Mason, “Dynamic breast tumor oximetery: the development of prosgnostic radiology,” Technology in Cancer Research & Treatment, 1, 1–8 (2002).

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near-Infrared Spectroscopy,” Appl. Opt., 39, 5231–5243 (2000).
[CrossRef]

Culver, J. P.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

Dubowitz, D. J.

R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, 23, S220–S233 (2004).
[CrossRef] [PubMed]

Duong, T. Q.

M. E. Brevard, T. Q. Duong, J. A. King, C. F. Ferris, “Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions,” Magn. Res. Imaging., 21, 995–1001 (2003).
[CrossRef]

Dzik-Jurasz, A.

A. R. Padhani, A. Dzik-Jurasz, “Perfusion MR imaging of extracranial tumor angiogenesis,” Top. Magn. Reson. Imaging, 15, 41–57 (2004).
[CrossRef] [PubMed]

Ferris, C. F.

M. E. Brevard, T. Q. Duong, J. A. King, C. F. Ferris, “Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions,” Magn. Res. Imaging., 21, 995–1001 (2003).
[CrossRef]

Ferwerda, A.A.

Frank, L.R.

R.B. Buxton, E.C. Wong, L.R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med., 39, 855–864 (1998).
[CrossRef] [PubMed]

Friston, K. J.

A. Mechelli, C. J. Price, K. J. Friston, “Nonlinear Coupling between Evoked rCBF and BOLD Signals: A Simulation Study of Hemodynamic Responses,” NeuroImage, 14, 862–872 (2001).
[CrossRef] [PubMed]

K. J. Friston, A. Mechelli, R. Turner, C. J. Price, “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,” NeuroImage, 12, 466–477 (2000).
[CrossRef] [PubMed]

Ghorbel, F. H.

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

Gray, L. H.

R. H. Thomlinson, L. H. Gray, “The histological structure of some human lung cancers and the possible implications for radiotherapy,” Br. J. Cancer, 9, 539–549 (1955).
[CrossRef] [PubMed]

Groenhuis, R.A.

Grossman, Z.

R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999).
[CrossRef] [PubMed]

Gu, Y.

Y. Gu, R. Mason, H. Liu, “Estimated fraction of tumor vascular blood contents sampled by near infrared spectroscopy and 19F magnetic resonance spectroscopy,” Optics Express, 13, 1724–1733 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1724
[CrossRef] [PubMed]

Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt., 42, 2960–2967 (2003).
[CrossRef] [PubMed]

Hielscher, A. H.

A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004).
[CrossRef] [PubMed]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Hielsher, A.H.

A.H. Hielsher, S. L. Jacquest, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol., 40, 1957–1975 (1995).
[CrossRef]

Höckel, M.

P. Vaupel, O. Thews, D. K. Kelleher, M. Höckel, “Current status of knowledge and critical issues in tumor oxygenation,” In: Hudetz, Bruley (eds), Oxygen Transport to Tissue XX, 591–602 (Plenum Press, New York, 1998).

Hoge, R. D.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

Ide, K.

E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002).
[CrossRef] [PubMed]

Jacques, S. L.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Jacquest, S. L.

A.H. Hielsher, S. L. Jacquest, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol., 40, 1957–1975 (1995).
[CrossRef]

Jain, R. K.

R. K. Jain, “Barriers to drug delivery in solid tumors,” Sci. Am., 271, 58–65 (1994).
[CrossRef] [PubMed]

R. K. Jain, “Determinants of tumor blood flow: a review,” Cancer Res., 48, 2641–2658 (1988).
[PubMed]

Jasdzewski1, G.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

Jiang, X.

Johnston, D.

Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
[CrossRef] [PubMed]

Jones, M.

Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
[CrossRef] [PubMed]

Kelleher, D. K.

P. Vaupel, O. Thews, D. K. Kelleher, M. Höckel, “Current status of knowledge and critical issues in tumor oxygenation,” In: Hudetz, Bruley (eds), Oxygen Transport to Tissue XX, 591–602 (Plenum Press, New York, 1998).

Kety, S. S.

S. S. Kety, “The theory and applications of the exchange of inert gas at the lungs and tissue,” Pharmacol. Rev., 3, 1–41 (1951).
[PubMed]

Kim, J. G.

J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003).
[CrossRef]

Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt., 42, 2960–2967 (2003).
[CrossRef] [PubMed]

King, J. A.

M. E. Brevard, T. Q. Duong, J. A. King, C. F. Ferris, “Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions,” Magn. Res. Imaging., 21, 995–1001 (2003).
[CrossRef]

Knudsen, G. M.

E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002).
[CrossRef] [PubMed]

Kolstad, P.

P. Bergsjo, P. Kolstad, “Clinical trial with atmospheric oxygen breathing during radiotherapy of cancer of the cervix,” Scand. J. Clin. Lab. Invest. Suppl., 106, 167–171 (1968).
[PubMed]

Lasker, J.

A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004).
[CrossRef] [PubMed]

Law, I.

E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002).
[CrossRef] [PubMed]

Lazo, J.

B. Teicher, J. Lazo, A. Sartorelli, “Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells,” Cancer Res., 41, 73–81 (1981).
[PubMed]

Lee, J.

J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
[CrossRef] [PubMed]

Liu, H.

Y. Gu, R. Mason, H. Liu, “Estimated fraction of tumor vascular blood contents sampled by near infrared spectroscopy and 19F magnetic resonance spectroscopy,” Optics Express, 13, 1724–1733 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1724
[CrossRef] [PubMed]

J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003).
[CrossRef]

Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt., 42, 2960–2967 (2003).
[CrossRef] [PubMed]

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near-Infrared Spectroscopy,” Appl. Opt., 39, 5231–5243 (2000).
[CrossRef]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995).
[CrossRef] [PubMed]

M. Xia, H. Liu, “A model of the hemodynamic response of tumor in rats with hyperoxic gas challenge”, Optical Tomography and Spectroscopy of Tissue VII, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE5693, in press (2005).

Liu, T. T.

R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, 23, S220–S233 (2004).
[CrossRef] [PubMed]

Lu, K.

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

Mandeville, J. B.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

Marota, J.J.A.

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

Marshall, N.

H. D. Suit, N. Marshall, D. Woerner, “Oxygen, oxygen plus carbon dioxide, and radiation therapy of a mouse mammary carcinoma. Cancer,” Cancer, 30, 1154–1158 (1972).
[CrossRef] [PubMed]

Martindale, J.

Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
[CrossRef] [PubMed]

Mason, R.

Y. Gu, R. Mason, H. Liu, “Estimated fraction of tumor vascular blood contents sampled by near infrared spectroscopy and 19F magnetic resonance spectroscopy,” Optics Express, 13, 1724–1733 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1724
[CrossRef] [PubMed]

Mason, R. P.

Mason, R.P.

Y. Song, A. Constantinescu, R.P. Mason, “Dynamic breast tumor oximetery: the development of prosgnostic radiology,” Technology in Cancer Research & Treatment, 1, 1–8 (2002).

Mayhew, J.

Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
[CrossRef] [PubMed]

Mazurchuk, R.

R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999).
[CrossRef] [PubMed]

McPhee, M. S.

J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
[CrossRef] [PubMed]

Mechelli, A.

A. Mechelli, C. J. Price, K. J. Friston, “Nonlinear Coupling between Evoked rCBF and BOLD Signals: A Simulation Study of Hemodynamic Responses,” NeuroImage, 14, 862–872 (2001).
[CrossRef] [PubMed]

K. J. Friston, A. Mechelli, R. Turner, C. J. Price, “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,” NeuroImage, 12, 466–477 (2000).
[CrossRef] [PubMed]

Moskowitz, M.A.

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

Padhani, A. R.

A. R. Padhani, A. Dzik-Jurasz, “Perfusion MR imaging of extracranial tumor angiogenesis,” Top. Magn. Reson. Imaging, 15, 41–57 (2004).
[CrossRef] [PubMed]

Poldrack, R. A.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

Pott, F.

E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002).
[CrossRef] [PubMed]

Price, C. J.

A. Mechelli, C. J. Price, K. J. Friston, “Nonlinear Coupling between Evoked rCBF and BOLD Signals: A Simulation Study of Hemodynamic Responses,” NeuroImage, 14, 862–872 (2001).
[CrossRef] [PubMed]

K. J. Friston, A. Mechelli, R. Turner, C. J. Price, “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,” NeuroImage, 12, 466–477 (2000).
[CrossRef] [PubMed]

Robertson, C. S.

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

Rosen, B. R.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

Rostrup, E.

E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002).
[CrossRef] [PubMed]

Santus, R.

J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
[CrossRef] [PubMed]

Sartorelli, A.

B. Teicher, J. Lazo, A. Sartorelli, “Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells,” Cancer Res., 41, 73–81 (1981).
[PubMed]

Schwartz, E. E.

E. E. Schwartz, The biological basis of radiation therapy (Lippincott, Philadelphia, 1966).

Song, Y.

J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003).
[CrossRef]

Y. Song, A. Constantinescu, R.P. Mason, “Dynamic breast tumor oximetery: the development of prosgnostic radiology,” Technology in Cancer Research & Treatment, 1, 1–8 (2002).

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near-Infrared Spectroscopy,” Appl. Opt., 39, 5231–5243 (2000).
[CrossRef]

Stewart, M.

A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004).
[CrossRef] [PubMed]

Stobbe, C. C.

J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
[CrossRef] [PubMed]

Strangman, G.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

Straubinger, R. M.

R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999).
[CrossRef] [PubMed]

Suit, H. D.

H. D. Suit, N. Marshall, D. Woerner, “Oxygen, oxygen plus carbon dioxide, and radiation therapy of a mouse mammary carcinoma. Cancer,” Cancer, 30, 1154–1158 (1972).
[CrossRef] [PubMed]

Teicher, B.

B. Teicher, J. Lazo, A. Sartorelli, “Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells,” Cancer Res., 41, 73–81 (1981).
[PubMed]

Thews, O.

P. Vaupel, O. Thews, D. K. Kelleher, M. Höckel, “Current status of knowledge and critical issues in tumor oxygenation,” In: Hudetz, Bruley (eds), Oxygen Transport to Tissue XX, 591–602 (Plenum Press, New York, 1998).

Thomlinson, R. H.

R. H. Thomlinson, L. H. Gray, “The histological structure of some human lung cancers and the possible implications for radiotherapy,” Br. J. Cancer, 9, 539–549 (1955).
[CrossRef] [PubMed]

Tittel, F. K.

A.H. Hielsher, S. L. Jacquest, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol., 40, 1957–1975 (1995).
[CrossRef]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Turner, R.

K. J. Friston, A. Mechelli, R. Turner, C. J. Price, “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,” NeuroImage, 12, 466–477 (2000).
[CrossRef] [PubMed]

Uludag, K.

R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, 23, S220–S233 (2004).
[CrossRef] [PubMed]

Vaupel, P.

P. Vaupel, “Oxygen transport in tumors: Characteristics and clinical implications,” Adv. Exp. Med. Biol., 388, 341–351 (1996).
[CrossRef] [PubMed]

P. Vaupel, “Vascularization, blood flow, oxygenation, tissue pH, and bioenergetic status of human breast cancer,” In: Nemoto, LaManna (eds), Oxygen Transport to Tissue XVIII, 243–253 (Plenum Press, New York, 1997).

P. Vaupel, O. Thews, D. K. Kelleher, M. Höckel, “Current status of knowledge and critical issues in tumor oxygenation,” In: Hudetz, Bruley (eds), Oxygen Transport to Tissue XX, 591–602 (Plenum Press, New York, 1998).

Wang, L.

A.H. Hielsher, S. L. Jacquest, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol., 40, 1957–1975 (1995).
[CrossRef]

Ware, D. L.

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

Weisskoff, R. M.

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

Woerner, D.

H. D. Suit, N. Marshall, D. Woerner, “Oxygen, oxygen plus carbon dioxide, and radiation therapy of a mouse mammary carcinoma. Cancer,” Cancer, 30, 1154–1158 (1972).
[CrossRef] [PubMed]

Wong, E.C.

R.B. Buxton, E.C. Wong, L.R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med., 39, 855–864 (1998).
[CrossRef] [PubMed]

Worden, K. L.

Xia, M.

M. Xia, H. Liu, “A model of the hemodynamic response of tumor in rats with hyperoxic gas challenge”, Optical Tomography and Spectroscopy of Tissue VII, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE5693, in press (2005).

Zaharchuk, G.

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

Zhao, D.

J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003).
[CrossRef]

Zheng, Y.

Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
[CrossRef] [PubMed]

Zhou, R.

R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999).
[CrossRef] [PubMed]

Zwischenberger, J. B.

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

Adv. Exp. Med. Biol.

P. Vaupel, “Oxygen transport in tumors: Characteristics and clinical implications,” Adv. Exp. Med. Biol., 388, 341–351 (1996).
[CrossRef] [PubMed]

Am. J. Physiol. Heart. Circ. Physiol.

K. Lu, J. W. Clark, F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, A. Bidani, “Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model,” Am. J. Physiol. Heart. Circ. Physiol., 286, H584–H601 (2004).
[CrossRef]

Appl. Opt.

Br. J. Cancer

R. H. Thomlinson, L. H. Gray, “The histological structure of some human lung cancers and the possible implications for radiotherapy,” Br. J. Cancer, 9, 539–549 (1955).
[CrossRef] [PubMed]

Brain research

E. Rostrup, I. Law, F. Pott, K. Ide, G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain research, 954, 183–193 (2002).
[CrossRef] [PubMed]

Cancer

H. D. Suit, N. Marshall, D. Woerner, “Oxygen, oxygen plus carbon dioxide, and radiation therapy of a mouse mammary carcinoma. Cancer,” Cancer, 30, 1154–1158 (1972).
[CrossRef] [PubMed]

Cancer Res.

B. Teicher, J. Lazo, A. Sartorelli, “Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells,” Cancer Res., 41, 73–81 (1981).
[PubMed]

R. K. Jain, “Determinants of tumor blood flow: a review,” Cancer Res., 48, 2641–2658 (1988).
[PubMed]

J. Biomed. Opt.

A. Y. Bluestone, M. Stewart, J. Lasker, G.S. Absoulaev, A. H. Hielscher, “Three-dimensional optical tomographic brainimaging in small animals, part1:hypercapnia,” J. Biomed. Opt., 9, 1046–1062 (2004).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

J. B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B. R. Rosen, R. M. Weisskoff, “Evidence of a cerebrovascular postarteriole windkessel with delayed compliance,” J. Cereb. Blood Flow Metab., 19, 679–689 (1999).
[CrossRef] [PubMed]

J. of Biomed. Opt.

J. G. Kim, D. Zhao, Y. Song, A. Constantinescu, R. P. Mason, H. Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO2 Observed Using NIRS, pO2 Needle Electrode and 19F MR pO2 Mapping,” J. of Biomed. Opt., 8, 53–62 (2003).
[CrossRef]

Magn. Res. Imaging.

M. E. Brevard, T. Q. Duong, J. A. King, C. F. Ferris, “Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions,” Magn. Res. Imaging., 21, 995–1001 (2003).
[CrossRef]

Magn. Reson. Imaging

R. Mazurchuk, R. Zhou, R. M. Straubinger, R. I. Chau, Z. Grossman, “Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response,” Magn. Reson. Imaging, 17, 537–548 (1999).
[CrossRef] [PubMed]

Magn. Reson. Med.

R.B. Buxton, E.C. Wong, L.R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med., 39, 855–864 (1998).
[CrossRef] [PubMed]

Medical Physics

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of Blood Vessels on the Measurement of Hemoglobin Oxygenation as Determined by Time-Resolved Reflectance Spectroscopy,” Medical Physics, 22, 1209–1217 (1995).
[CrossRef] [PubMed]

NeuroImage

K. J. Friston, A. Mechelli, R. Turner, C. J. Price, “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,” NeuroImage, 12, 466–477 (2000).
[CrossRef] [PubMed]

A. Mechelli, C. J. Price, K. J. Friston, “Nonlinear Coupling between Evoked rCBF and BOLD Signals: A Simulation Study of Hemodynamic Responses,” NeuroImage, 14, 862–872 (2001).
[CrossRef] [PubMed]

Y. Zheng, J. Martindale, D. Johnston, M. Jones, J. Berwick, J. Mayhew, “A Model of the hemodynamic Response and Oxygen Delivery to Brain,” NeuroImage, 16, 617–637 (2002).
[CrossRef] [PubMed]

R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, “Modeling the hemodynamic response to brain activation,” NeuroImage, 23, S220–S233 (2004).
[CrossRef] [PubMed]

Optics Express

Y. Gu, R. Mason, H. Liu, “Estimated fraction of tumor vascular blood contents sampled by near infrared spectroscopy and 19F magnetic resonance spectroscopy,” Optics Express, 13, 1724–1733 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1724
[CrossRef] [PubMed]

Pharmacol. Rev.

S. S. Kety, “The theory and applications of the exchange of inert gas at the lungs and tissue,” Pharmacol. Rev., 3, 1–41 (1951).
[PubMed]

Phys. Med. Biol.

A.H. Hielsher, S. L. Jacquest, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol., 40, 1957–1975 (1995).
[CrossRef]

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski1, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol., 48, 2405–2418 (2003).
[CrossRef] [PubMed]

Radiat. Res.

J. D. Chapman, C. C. Stobbe, M. R. Arnfield, R. Santus, J. Lee, M. S. McPhee, “Oxygen dependency of tumor cell killing in vitro by light activated photofrin II,” Radiat. Res., 126, 73–79 (1991).
[CrossRef] [PubMed]

Scand. J. Clin. Lab. Invest. Suppl.

P. Bergsjo, P. Kolstad, “Clinical trial with atmospheric oxygen breathing during radiotherapy of cancer of the cervix,” Scand. J. Clin. Lab. Invest. Suppl., 106, 167–171 (1968).
[PubMed]

Sci. Am.

R. K. Jain, “Barriers to drug delivery in solid tumors,” Sci. Am., 271, 58–65 (1994).
[CrossRef] [PubMed]

Technology in Cancer Research & Treatment

Y. Song, A. Constantinescu, R.P. Mason, “Dynamic breast tumor oximetery: the development of prosgnostic radiology,” Technology in Cancer Research & Treatment, 1, 1–8 (2002).

Top. Magn. Reson. Imaging

A. R. Padhani, A. Dzik-Jurasz, “Perfusion MR imaging of extracranial tumor angiogenesis,” Top. Magn. Reson. Imaging, 15, 41–57 (2004).
[CrossRef] [PubMed]

Other

P. Vaupel, O. Thews, D. K. Kelleher, M. Höckel, “Current status of knowledge and critical issues in tumor oxygenation,” In: Hudetz, Bruley (eds), Oxygen Transport to Tissue XX, 591–602 (Plenum Press, New York, 1998).

P. Vaupel, “Vascularization, blood flow, oxygenation, tissue pH, and bioenergetic status of human breast cancer,” In: Nemoto, LaManna (eds), Oxygen Transport to Tissue XVIII, 243–253 (Plenum Press, New York, 1997).

M. Xia, H. Liu, “A model of the hemodynamic response of tumor in rats with hyperoxic gas challenge”, Optical Tomography and Spectroscopy of Tissue VII, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE5693, in press (2005).

E. E. Schwartz, The biological basis of radiation therapy (Lippincott, Philadelphia, 1966).

Supplementary Material (5)

» Media 1: MPG (266 KB)     
» Media 2: MPG (1762 KB)     
» Media 3: MPG (1643 KB)     
» Media 4: MPG (1539 KB)     
» Media 5: MPG (1539 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Normalized hemodynamic changes of tumor blood oxygenation, Δ[HbO2], obtained with the NIRS measurement from a rat breast tumor while the breathing gas was switched from air to carbogen (Gu et al. Applied Optics, 2003) [12].

Fig. 2.
Fig. 2.

A schematic diagram of light transmitting patterns in a tumor when the tumor has two distinct perfusion regions. The right side of tumor with gray color represents the poorly perfused region, whereas the left side of tumor corresponds to a well-perfused region. As shown, different detectors may interrogate different tumor volumes.

Fig. 3.
Fig. 3.

The geometry used in our FEM simulations for a simplified tumor vascular model. R1 and R2 rectangles are located in a fast flow region, while R3 and R4 are in a slow flow region within tumor. The units for both the X-axis and Y-axis are cm. The distances from R1 to R2 and from R2 to R3 are 1 cm and 0.5 cm, respectively.

Fig. 4.
Fig. 4.

Light distribution inside of a simplified tumor vascular model simulated by FEM with the increase of R1 and R2 length to mimic the oxygenated blood flow in the well perfused region. (Movie: 267 KB)

Fig. 5.
Fig. 5.

Light distributions inside of a simplified tumor vascular model simulated by the FEM. Left column: (a1) is the output result with an only fast simulated flow rate (R1 and R2), (b1) is the result with an only slow flow rate (R3 and R4) (Movie: 1,763 KB), and (c1) is the result with both fast and slow flow combined (R1, R2, R3 and R4) (Movie: 1,643 KB). Right column: Optical density changes measured at three locations, (2,0), (-2,0), and (0,2), in the FEM simulations during fast flow only (a2), slow flow only (b2), and both fast and slow flow combined (c2).

Fig. 6.
Fig. 6.

FEM simulations of light distribution inside of a simplified tumor vascular model. Left column: (a1) shows the results when the light source is located perpendicular to the vessels (Movie: 1,539 KB), (b1) presents the results when the light source is located in the center of the model (Movie: 1,540 KB). Right column: Changes in O.D. measured at three locations, as labeled in Fig. 6(a1), with a fast and slow flow combined. (a2) plots three ΔO.D. profiles measured at the respective locations; (b2) reveals four ΔO.D. temporal profiles during the combined fast and slow flow.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ [ Hb O 2 ] vasculture ( t ) = γ H o [ 1 exp ( f t γ ) ] = A [ 1 exp ( t τ ) ] ,
Δ [ Hb O 2 ] vasculture ( t ) = γ 1 H o [ 1 exp ( f 1 t γ 1 ) ] + γ 2 H o [ 1 exp ( f 2 t γ 2 ) ]
= A 1 [ 1 exp ( t τ 1 ) ] + A 2 [ 1 exp ( t τ 2 ) ]
γ 1 γ 2 = A 1 A 2 f 1 f 2 = A 1 A 2 τ 1 τ 2
( 1 c ) ( t ) ϕ ( r , t ) D 2 ϕ ( r , t ) + μ a ϕ ( r , t ) = S ( r , t )
Z e = ϕ ( z = 0 ) [ ( z ) ϕ ( r , z , t ) t = 0 ] = 2 A D , ϕ ( r , z = z e , t ) = 0
r d = 1.440 n 2 + 0.710 n 1 + 0.668 + 0.0636 n
Δ O . D . = log ( ϕ initial ϕ transient )

Metrics