Abstract

Using a single interferometric lithography patterning step along with self-aligned pattern-definition techniques, uniform, large-area metallic coaxial arrays with ~100-nm toroidal gaps are fabricated. Enhanced (5×) mid-infrared (4 µm) transmission through these sub-wavelength coaxial arrays is observed as compared with that through the same fractional opening area hole arrays as a result of the complex coaxial unit cell. Varying the coaxial dimensions shifts the resonance wavelength and impacts the maximum transmission; design rules are derived. The ability to control the transmission wavelength combined with dramatically enhanced transmission represent a promising path toward nanophotonic applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 391, 667-669 (1998).
    [CrossRef]
  2. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Science 297, 820�??822 (2002).
    [CrossRef] [PubMed]
  3. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux and T. W. Ebbesen, �??Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,�?? Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  4. H. J. Lezec and T. Thio, �??Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,�?? Opt. Express 12, 3629-3651 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629</a>
    [CrossRef] [PubMed]
  5. A. Degiron and T. W. Ebbesen, �??The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,�?? J. Opt. A: Pure Appl. Opt. 7, S90-S96 (2005).
    [CrossRef]
  6. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. �??t Hooft, D. Lenstra and E. R. Eliel, �??Plasmon-Assisted two-slit transmission: Young�??s experiment revisited,�?? Phys, Rev. Lett. 94, 053901 (2005)
    [CrossRef]
  7. A. Nahata, R. A. Linke, T. Ishi and K. Ohashi, �??Enhanced nonlinear optical conversion from a periodically nanostructured metal film,�?? Opt. Lett. 28, 423-425 (2003).
    [CrossRef] [PubMed]
  8. W. L. Barnes, A. Dereux and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature (London) 424, 824-830 (2003).
    [CrossRef]
  9. F. I. Baida and D. Van Labeke, �??Light transmission by subwavelength annular aperture arrays in metallic films,�?? Opt. Commun. 209, 17-22 (2002).
    [CrossRef]
  10. A. Moreau, G. Granet, F. I. Baida and D. Van Labeke, �??Light transmission by subwavelength square coaxial aperture arrays in metallic films,�?? Opt. Express 11, 1131-1136 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1131.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1131</a>
    [CrossRef] [PubMed]
  11. W. Fan, S. Zhang, B. Minhas, K. J. Malloy and S. R. J. Brueck, �??Enhanced infrared transmission through subwavelength coaxial metallic arrays,�?? Phys. Rev. Lett. 94, 033902 (2005).
    [CrossRef] [PubMed]
  12. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, �??Evanescently coupled resonance in surface plasmon enhanced transmission,�?? Opt. Commun. 200, 1-7 (2001).
    [CrossRef]
  13. S. R. J. Brueck, S. H. Zaidi, X. Chen and Z. Zhang, �??Interferometric lithography - from periodic arrays to arbitrary patterns,�?? Microelectron. Eng. 42, 145-148 (1998).
    [CrossRef]
  14. C. Genet, M. P. Van Exter and J. P. Woerdman, �??Fano-type interpretation of red shifts and red tails in hole array transmission spectra,�?? Opt. Commun. 225, 331-336 (2003).
    [CrossRef]
  15. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau and A. Belkhir, �??Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,�?? Appl. Phys. B 79, 1-8 (2004).
    [CrossRef]
  16. N. Marcuvitz, Waveguide handbook, (New York: McGraw-Hill, 1951).

Appl. Phys. B (1)

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau and A. Belkhir, �??Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,�?? Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

A. Degiron and T. W. Ebbesen, �??The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,�?? J. Opt. A: Pure Appl. Opt. 7, S90-S96 (2005).
[CrossRef]

Microelectron. Eng. (1)

S. R. J. Brueck, S. H. Zaidi, X. Chen and Z. Zhang, �??Interferometric lithography - from periodic arrays to arbitrary patterns,�?? Microelectron. Eng. 42, 145-148 (1998).
[CrossRef]

Nature (London) (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 391, 667-669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature (London) 424, 824-830 (2003).
[CrossRef]

Opt. Commun (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, �??Evanescently coupled resonance in surface plasmon enhanced transmission,�?? Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Opt. Commun. (2)

C. Genet, M. P. Van Exter and J. P. Woerdman, �??Fano-type interpretation of red shifts and red tails in hole array transmission spectra,�?? Opt. Commun. 225, 331-336 (2003).
[CrossRef]

F. I. Baida and D. Van Labeke, �??Light transmission by subwavelength annular aperture arrays in metallic films,�?? Opt. Commun. 209, 17-22 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys, Rev. Lett. (1)

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. �??t Hooft, D. Lenstra and E. R. Eliel, �??Plasmon-Assisted two-slit transmission: Young�??s experiment revisited,�?? Phys, Rev. Lett. 94, 053901 (2005)
[CrossRef]

Phys. Rev. Lett. (2)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux and T. W. Ebbesen, �??Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,�?? Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy and S. R. J. Brueck, �??Enhanced infrared transmission through subwavelength coaxial metallic arrays,�?? Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Science (1)

H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Science 297, 820�??822 (2002).
[CrossRef] [PubMed]

Other (1)

N. Marcuvitz, Waveguide handbook, (New York: McGraw-Hill, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Processing flow scheme (see text for detailed description).

Fig. 2.
Fig. 2.

SEM pictures of the critical steps for fabrication of annular metallic coaxial arrays: (a) Top view of PR post array after IL; (b) Top view of Cr etch mask; (c) Cross-section view after anisotropic etching, the layers from top to bottom are Cr, BARC, PMMA, SiNx and GaAs substrate; (d) Cross-section view after isotropic etching of SiNx, the undercut of the SiNx defines the coaxial gap; (e) Cross-section view after planarization and etch back steps, the SiNx layer is exposed and the PR fills the hole on top of the center Au dot; (f) Tilted-view of PR filler covering on top of the center Au dot (thin dark shadow dot in the picture) after BOE etch for removal of the SiNx sacrificial layer.

Fig. 3.
Fig. 3.

SEM pictures of five different 1.12-µm pitch annular coaxial arrays and the hole array; structure dimensions are provided in Table I.

Fig. 4.
Fig. 4.

Transmission spectra of different metallic coaxial and hole arrays. The individual spectra are each vertically offset by 2% for clarity. The left vertical axis is for the hole array, the right vertical axis for the coax-5 sample.

Fig. 5.
Fig. 5.

Variation of transmission peak wavelength with coaxial geometry. n is the refractive index of the coax gap media. Date points of different coaxial samples from this paper where n=1 is fixed (black circles); data points of different coax samples from ref. 11 where n=1 (red triangles); and data points from ref. 11 where n varies and a+b is fixed (blue squares).

Fig. 6.
Fig. 6.

Transmission spectral dependence on incident angle for TE (left) and TM (right) polarized light for sample coax-5.

Tables (1)

Tables Icon

Table 1. Summary of sample dimensions and transmission results.

Metrics