Abstract

We report on the fabrication and characterization of void-based body-centered-cubic (bcc) photonic crystals in a solidified transparent polymer by the use of a femtosecond laser-driven microexplosion method. The change in the refractive index in the region surrounding the void dots that form the bcc structures is verified by presenting confocal microscope images, and the bandgap properties are characterized by using a Fourier transform infrared spectrometer. The effect of the angle of incidence on the photonic bandgaps is also studied. We observe multiple stop gaps with a suppression rate of the main gap of 47% for a bcc structure with a lattice constant of 2.77 µm, where the first and second stop gaps are located at 3.7 µm and 2.2 µm, respectively. We also present a theoretical approach to characterize the refractive index of the material for calculating the bandgap spectra, and confirm that the wavelengths of the observed bandgaps are in good correlation with the analytical predictions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000).
    [CrossRef] [PubMed]
  4. S. Lin, V. M. Hietala, L. Wang, and E. D. Jones, �??Highly dispersive photonic band-gap prism,�?? Opt. Lett. 21, 1771-1773 (1996).
    [CrossRef] [PubMed]
  5. T. Baba and M. Nakamura, �??Photonic crystal light deflection devices using the superprism effect,�?? IEEE J. Quantum Electron. 38, 909-914 (2002).
    [CrossRef]
  6. K. M. Ho, C. T. Chan, and C. M. Soukoulis, �??Existence of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef] [PubMed]
  7. G. Zhou, M.J. Ventura, M.R. Vanner, and M. Gu, �??Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,�?? Opt. Lett. 29, 2240-2242 (2004).
    [CrossRef] [PubMed]
  8. G. Zhou, M.J. Ventura, M.R. Vanner, and M. Gu, �??Fabrication and characterization of face-centered-cubic void dots photonic crystals in a solid polymer material,�?? Appl. Phys. Lett. 86, 011108 (2005).
    [CrossRef]
  9. H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, �??Arbitrary-lattice photonic crystals created by multiphoton microfabrication,�?? Opt. Lett. 26, 325-327 (2001).
    [CrossRef]
  10. H.-B. Sun, Y. Xu, K. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, �??Inlayed �??atom�??-like three-dimensional photonic crystal structures created with femtosecond laser microfabrication,�?? Proc. Mater. Res. Soc. 605, 85-90 (2000).
    [CrossRef]
  11. H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, �??Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,�?? Opt. Rev. 6, 396-398 (1999).
    [CrossRef]
  12. M. J. Ventura, M. Straub, and M. Gu, �??Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,�?? Appl. Phys. Lett. 82, 1649-1651 (2003).
    [CrossRef]
  13. G. Zhou, M. J. Ventura, M. Straub, and M. Gu, �?? In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal,�?? Appl. Phys. Lett. 84, 4415-4417 (2004).
    [CrossRef]
  14. E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? Appl. Phys. Lett. 71, 882-884 (1997).
    [CrossRef]
  15. D. Day and M. Gu, �??Formation of voids in a doped polymethylmethacrylate polymer,�?? Appl. Phys. Lett. 80, 2404-2406 (2002).
    [CrossRef]
  16. M. Straub, M.J. Ventura, and M. Gu, �??Multiple higher-order stop gaps in infrared polymer photonic crystals,�?? Phys. Rev. Lett. 91, 043901 (2003).
    [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  18. D. Day and M. Gu, �??Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer,�?? Appl. Opt. 37, 6299-6304 (1998).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. J. Ventura, M. Straub, and M. Gu, �??Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,�?? Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

G. Zhou, M. J. Ventura, M. Straub, and M. Gu, �?? In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal,�?? Appl. Phys. Lett. 84, 4415-4417 (2004).
[CrossRef]

E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

D. Day and M. Gu, �??Formation of voids in a doped polymethylmethacrylate polymer,�?? Appl. Phys. Lett. 80, 2404-2406 (2002).
[CrossRef]

G. Zhou, M.J. Ventura, M.R. Vanner, and M. Gu, �??Fabrication and characterization of face-centered-cubic void dots photonic crystals in a solid polymer material,�?? Appl. Phys. Lett. 86, 011108 (2005).
[CrossRef]

IEEE J. Quantum Electron.

T. Baba and M. Nakamura, �??Photonic crystal light deflection devices using the superprism effect,�?? IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Nature

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Rev.

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, �??Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,�?? Opt. Rev. 6, 396-398 (1999).
[CrossRef]

Phys. Rev. Lett.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, �??Existence of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

M. Straub, M.J. Ventura, and M. Gu, �??Multiple higher-order stop gaps in infrared polymer photonic crystals,�?? Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef] [PubMed]

Proc. Mater. Res. Soc.

H.-B. Sun, Y. Xu, K. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, �??Inlayed �??atom�??-like three-dimensional photonic crystal structures created with femtosecond laser microfabrication,�?? Proc. Mater. Res. Soc. 605, 85-90 (2000).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1669 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sketch of a 3D bcc structure with a lattice spacing parameter of a and the stacking direction [100] marked by an arrow.

Fig. 2.
Fig. 2.

Confocal reflection microscope images of the top four layers of a bcc structure stacked in the [100] direction with a lattice constant of 3.46 µm. A movie (1.62 MB) of the confocal reflection images of the top 6 layers.

Fig. 3.
Fig. 3.

(a) A variation of the transmission spectra of a bcc structure with a lattice constant of 3.12 µm stacked in the [100] direction when different apertures are used. (b) Transmission spectra of bcc structures stacked in the [100] direction with lattice constants of 2.77 µm, 3.12 µm, and 3.46 µm. The first and second gaps are marked.

Fig. 4.
Fig. 4.

Calculated photonicbandgap in the [100] direction for various sphere radius based on (a) the refractive index of the polymer before fabrication (n=1.56) and (b) the effective refractive index. Inset shows the effective refractive indices as a function as the sphere radius.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R void = V void V WS = ( 4 3 ) π ( r a ) 3 4 ( 3 3 ) = 3 π ( r a ) 3
n eff = ( n avg R Void ) ( 1 R Void )

Metrics