Abstract

Polarization and modal birefringence of elliptical-core two-mode fibers are investigated. Wavelengths corresponding to zero group delay difference (GDD) between the two spatial modes and between the orthogonal polarizations are computed when the fiber parameters, i.e., the relative core/cladding index difference and the ratio of major over minor axis, are varied. Simple relationships between the zero GDD wavelengths and fiber parameters are obtained. With proper fiber design, zero GDD between the two spatial modes and the two orthogonal polarizations can be achieved at the same wavelength.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Ramachandran, �??Novel photonic devices in few-mode fibres,�?? IEE Proc.- Circuits Devices Syst. 150, 473-479 (2003).
    [CrossRef]
  2. A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, �??Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,�?? J. Lightwave Technol. 12, 170-177 (1994).
    [CrossRef]
  3. H.S. Park, K.Y. Song, S.H. Yun, and B. Y. Kim, �??All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,�?? J. Lightwave Tech. 20, 1864-1868 (2002).
    [CrossRef]
  4. K. Y. Song, and B.Y. Kim, �??Broad-band LP01 mode excitation using a fused-typed mode-selective coupler,�?? IEEE Photon. Technol. Lett. 15, 1734-1736 (2003).
    [CrossRef]
  5. H.S. Park, S.H. Yun, I.K. Hwang, S.B. Lee, and B.Y. Kim, �??All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,�?? IEEE Photon. Technol. Lett. 13, 460-462 (2001).
    [CrossRef]
  6. W.V. Sorin, B.Y. Kim, and H.J. Shaw, �??Highly selective evanescent modal filter for two-mode optical fibers,�?? Opt. Lett. 11, 581-583 (1986).
    [CrossRef] [PubMed]
  7. S.H. Yun, I.K. Hwang, and B.Y. Kim, �??All-fiber tunable filter and laser based on two-mode fiber,�?? Opt. Lett. 21, 27-29 (1996).
    [CrossRef] [PubMed]
  8. K.A. Murphy, M.S. Miller, A.M. Vengsarkar, and R.O. Claus, �??Elliptical-core two-mode optical-fiber sensor implementation methods,�?? J. Lightwave Technol. 8, 1688-1696 (1990).
    [CrossRef]
  9. B.Y. Kim, J.N. Blake, S.Y. Huang, and H.J. Shaw, �??Use of highly elliptical core fibers for two-mode fiber devices,�?? Opt. Lett. 12, 729-731 (1987).
    [CrossRef] [PubMed]
  10. J.N. Blake, S.Y. Huang, B.Y. Kim, and H.J. Shaw, �??Strain effects on highly elliptical core two-mode fibers,�?? Opt. Lett. 12, 732-734 (1987).
    [CrossRef] [PubMed]
  11. S.Y. Huang, J.N. Blake, and B.Y. Kim, �??Perturbation effects on mode propagation in highly elliptical core two-mode fibers,�?? J. Lightwave Technol. 8, 23-33 (1990).
    [CrossRef]
  12. K.Y. Song, I.K. Hwang, S.H. Yun, and B.Y. Kim, �??High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm,�?? IEEE Photon. Technol. Lett. 14, 501-503 (2002).
    [CrossRef]
  13. J. Ju, W. Jin, and M.S. Demokan, �??Two-mode operation in highly birefringent photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).
    [CrossRef]
  14. A.W. Snyder and X.-H. Zheng, �??Optical fibers of arbitrary cross sections,�?? J. Opt. Soc. Am. A 3, 600-609 (1986).
    [CrossRef]
  15. K. Thyagarajan, S.N. Sarkar, and B.P. Pal, �??Equivalent step index (ESI) model for elliptic core Fibers,�?? J. Lightwave Technol. LT-5, 1041-1044 (1987).
    [CrossRef]
  16. Masashi Eguchi, Masanori Koshiba, �??Accurate finite-element analysis of dual-mode highly elliptical-core fibers,�?? J. Lightwave Technol. 12, 607-613 (1994).
    [CrossRef]
  17. Robert L. Gallawa, I. C. Goyal, Yinggang Tu, and Ajoy K. Ghatak, �??Optical waveguide modes: an approximate solution using Galerkin�??s method with Hermite-Gauss basis functions,�?? IEEE J. Quan. Electron. 21, 518-522 (1991).
    [CrossRef]
  18. Tzong-Lin Wu, and Hung-chun Chang, �??An efficient numerical approach for determining the dispersion characteristics of dual-mode elliptical-core optical fibers,�?? J. Lightwave Technol. 13, 1926-1934 (1995).
    [CrossRef]
  19. R.B. Dyott, Elliptical Fiber Waveguides, (Boston, Artech House, 1995).
  20. C.D. Poole, J.M. Wiesenfeld, and D.J. Digiovanni, �??Elliptical-core dual-mode fiber dispersion compensator,�?? IEEE Photon. Technol. Lett. 5, 194-197 (1993).
    [CrossRef]
  21. C.D. Poole, J.M. Wiesenfeld, D.J. Digiovanni, and A.M. Vengsarkar, �??Optical fiber-based dispersion compensation using higher order modes near cutoff,�?? J. Lightwave Technol. 12, 1746-1758 (1994).
    [CrossRef]
  22. Wang Zhi, Ren Guobin, Lou Shuqin, Liang Weijun, �??Investigation of the supercell based orthonormal basis function method for different kinds of fibers,�?? Opt. Fiber Technol. 10, 296-311 (2004).
    [CrossRef]
  23. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic crystals: molding the flow of light, (New York, Princeton university press, 1995).
  24. J. Blake, M.C. Pacitti, S.L.A. Carrara, �??Splitting of the Second Order Mode Cutoff Wavelengths in Elliptical Core Fibers,�?? Optical Fiber Sensors Conference, 1992. 8th, Jan. 29-31, 125�??128 (1992).
    [CrossRef]

IEE Proc.- Circuits Devices Syst.

S. Ramachandran, �??Novel photonic devices in few-mode fibres,�?? IEE Proc.- Circuits Devices Syst. 150, 473-479 (2003).
[CrossRef]

IEEE J. Quan. Electron.

Robert L. Gallawa, I. C. Goyal, Yinggang Tu, and Ajoy K. Ghatak, �??Optical waveguide modes: an approximate solution using Galerkin�??s method with Hermite-Gauss basis functions,�?? IEEE J. Quan. Electron. 21, 518-522 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

K.Y. Song, I.K. Hwang, S.H. Yun, and B.Y. Kim, �??High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550nm,�?? IEEE Photon. Technol. Lett. 14, 501-503 (2002).
[CrossRef]

J. Ju, W. Jin, and M.S. Demokan, �??Two-mode operation in highly birefringent photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).
[CrossRef]

K. Y. Song, and B.Y. Kim, �??Broad-band LP01 mode excitation using a fused-typed mode-selective coupler,�?? IEEE Photon. Technol. Lett. 15, 1734-1736 (2003).
[CrossRef]

H.S. Park, S.H. Yun, I.K. Hwang, S.B. Lee, and B.Y. Kim, �??All-fiber add-drop wavelength-division multiplexer based on intermodal coupling,�?? IEEE Photon. Technol. Lett. 13, 460-462 (2001).
[CrossRef]

C.D. Poole, J.M. Wiesenfeld, and D.J. Digiovanni, �??Elliptical-core dual-mode fiber dispersion compensator,�?? IEEE Photon. Technol. Lett. 5, 194-197 (1993).
[CrossRef]

J. Lightwave Tech.

H.S. Park, K.Y. Song, S.H. Yun, and B. Y. Kim, �??All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,�?? J. Lightwave Tech. 20, 1864-1868 (2002).
[CrossRef]

J. Lightwave Technol.

S.Y. Huang, J.N. Blake, and B.Y. Kim, �??Perturbation effects on mode propagation in highly elliptical core two-mode fibers,�?? J. Lightwave Technol. 8, 23-33 (1990).
[CrossRef]

Tzong-Lin Wu, and Hung-chun Chang, �??An efficient numerical approach for determining the dispersion characteristics of dual-mode elliptical-core optical fibers,�?? J. Lightwave Technol. 13, 1926-1934 (1995).
[CrossRef]

K. Thyagarajan, S.N. Sarkar, and B.P. Pal, �??Equivalent step index (ESI) model for elliptic core Fibers,�?? J. Lightwave Technol. LT-5, 1041-1044 (1987).
[CrossRef]

Masashi Eguchi, Masanori Koshiba, �??Accurate finite-element analysis of dual-mode highly elliptical-core fibers,�?? J. Lightwave Technol. 12, 607-613 (1994).
[CrossRef]

A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, �??Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,�?? J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

K.A. Murphy, M.S. Miller, A.M. Vengsarkar, and R.O. Claus, �??Elliptical-core two-mode optical-fiber sensor implementation methods,�?? J. Lightwave Technol. 8, 1688-1696 (1990).
[CrossRef]

C.D. Poole, J.M. Wiesenfeld, D.J. Digiovanni, and A.M. Vengsarkar, �??Optical fiber-based dispersion compensation using higher order modes near cutoff,�?? J. Lightwave Technol. 12, 1746-1758 (1994).
[CrossRef]

J. Opt. Soc. Am. A

OFC 1992

J. Blake, M.C. Pacitti, S.L.A. Carrara, �??Splitting of the Second Order Mode Cutoff Wavelengths in Elliptical Core Fibers,�?? Optical Fiber Sensors Conference, 1992. 8th, Jan. 29-31, 125�??128 (1992).
[CrossRef]

Opt. Fiber Technol.

Wang Zhi, Ren Guobin, Lou Shuqin, Liang Weijun, �??Investigation of the supercell based orthonormal basis function method for different kinds of fibers,�?? Opt. Fiber Technol. 10, 296-311 (2004).
[CrossRef]

Opt. Lett.

Other

R.B. Dyott, Elliptical Fiber Waveguides, (Boston, Artech House, 1995).

J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic crystals: molding the flow of light, (New York, Princeton university press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1.

(a) The cross-section of the elliptical-core fiber; (b) Δβ and GDD of an ECF with structural parameters of a=3µm, Δ=0.5%, η=2.5; (c) the relationship between λ 0P1 and fiber parameters; (d) the relationship between λ 0P2 and fiber parameters.

Fig. 2.
Fig. 2.

(a) The effective mode index of an ECF with the parameters same as given in Fig. 1(b); (b) and (c) the numerical and fitted results of the cutoff wavelengths of LP11 even and LP11 odd modes; (d) the ratio of the even to odd LP11 mode cutoff wavelengths as a function of aspect ratio.

Fig. 3.
Fig. 3.

(a) The GDD, PDD and the SMB of an ECF with the same parameters as given in Fig. 1(b), (b) The relationship between zero-GDD wavelength λ 0s and the fiber parameters η and Δ.

Fig. 4.
Fig. 4.

Comparison of λ c1, λ c2, λ 0sy and λ 0p1

Fig. 5.
Fig. 5.

The relationship between the beat length (a: L PMB1, b: L PMB2, c: L SMBy) at λ 0s and Δ for various η.

Fig. 6.
Fig. 6.

The PMB, SMB and GDD of a two-mode ECF with the structural parameters a=5µm, η=2.4, Δ=0.01. The PMB is amplified by 100 times in order to be plotted with the SMB.

Tables (1)

Tables Icon

Table 1. The fitted and the numerical results of a two-mode ECF with a=5µm, η=2.4, Δ=0.01.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ τ gp = d ( Δ β PMB 1 ) d ω = λ 2 2 π c d ( Δ β PMB 1 ) d λ ,
λ 0 p 1 a = λ MPMB a = ( C 1 η + C 2 ) Δ , C 1 4.714 , C 2 1.148 .
λ 0 p 2 a = λ MPMB 2 a = ( C 1 η + C 2 ) Δ , C 1 6.390 , C 2 0.05194 .
λ c 1 a = ( C 3 η + C 4 ) Δ , C 3 2.602 , C 4 3.356 ,
λ c 2 a = ( C 3 η + C 4 ) Δ , C 3 4.474 , C 4 1.051 ,
Δ τ gs = d ( Δ β SMB ) / d ω = λ 2 2 π c d ( Δ β SMB ) d λ ,
Δ τ ps = Δ β SMB / ω = Δ β SMB 2 π c λ ,
λ 0 sy a = λ MSMBy a = ( C 5 η + C 6 ) Δ , C 5 2.710 , C 6 1.981 ,
λ 0 sx a = λ MSMBx a = ( C 5 η + C 6 ) Δ , C 5 2.732 , C 6 1.966 ,
L PMB 1 a = C 7 η 2 Δ 3 2 , C 7 44.18 ,
L PMB 2 a = C 8 ( η 2 + C 9 ) Δ 3 2 , C 8 4.163 , C 9 1.286 ,
L SMBy a = C 10 η + C 11 Δ , C 10 0.22 , C 11 6.0 .
1 L SMBx 1 L SMBy = 1 L PMB 2 1 L PMB 1 .

Metrics