Abstract

We investigate, experimentally and theoretically, light propagation in one-dimensional waveguide arrays exhibiting a saturable self-defocusing nonlinearity. We demonstrate low-intensity “discrete diffraction”, and the high-intensity formation of spatial gap solitons arising from the first band of the transmission spectrum. The waveguide arrays are fabricated by titanium in-diffusion in a photorefractive copper-doped lithium niobate crystal, and the optical nonlinearity arises from the bulk photovoltaic effect.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
    [CrossRef] [PubMed]
  2. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 19, 794–796 (1988).
    [CrossRef]
  3. H. S. Eisenberg, Y. Silberberg, Y. Morandotti, R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
    [CrossRef]
  4. Y. S. Kivshar, “Self-localization in arrays of defocusing waveguides,” Opt. Lett. 20, 1147–1149 (1993).
    [CrossRef]
  5. J. Feng, “Alternative scheme for studying gap solitons in infinite periodic Kerr media,” Opt. Lett. 20, 1302–1304 (1993).
    [CrossRef]
  6. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
    [CrossRef] [PubMed]
  7. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
    [CrossRef] [PubMed]
  8. S. Darmanyan, A. Kobyakov, and F. Lederer, “Stability of strongly localized excitations in discrete media with cubic nonlinearity,” JETP 86, 682–686 (1998).
    [CrossRef]
  9. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710–712 (2003).
    [CrossRef] [PubMed]
  10. O. Manela, O. Cohen, G. Bartal, J. W. Fleischer, and M. Segev, “Two-dimensional higher-band vortex lattice solitons,” Opt. Lett. 29, 2049–2051 (2004).
    [CrossRef] [PubMed]
  11. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of 2nd-band vortex solitons in 2D photonic lattices,” submitted to Phys. Rev. Lett.
  12. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
    [CrossRef] [PubMed]
  13. O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003).
    [CrossRef] [PubMed]
  14. A. A. Sukhorukov and Y.S. Kivshar, “Multigap discrete vector solitons,” Phys. Rev. Lett. 91, 113902 (2003).
    [CrossRef] [PubMed]
  15. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton trains in photonic lattices,” Opt. Express 12, 2831–2837 (2004).
    [CrossRef] [PubMed]
  16. A. S. Davydov, Solitons in Molecular Systems (Kluwer Academic, Dordrecht, 1991).
  17. A. H. Xie, L. van der Meer, V. Hoff, and R. H. Austin, “Long-lived amide I vibrational modes in myoglobin,” Phys. Rev. Lett. 84, 5435–5438 (2000).
    [CrossRef] [PubMed]
  18. B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
    [CrossRef]
  19. U. T. Schwartz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnets,” Phys. Rev. Lett. 83, 223–226 (1999).
    [CrossRef]
  20. E. Trias, J. J. Mazo, and T. P. Orlando, “Discrete breathers in nonlinear lattices: experimental detection in Josephson junctions,” Phys. Rev. Lett. 84, 741–744 (2000).
    [CrossRef] [PubMed]
  21. P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, “Observation of breathers in Josephson ladders,” Phys. Rev. Lett. 84, 745–748 (2000).
    [CrossRef] [PubMed]
  22. A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
    [CrossRef] [PubMed]
  23. B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
    [CrossRef] [PubMed]
  24. D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
    [CrossRef] [PubMed]
  25. D. N. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, “Controlled generation and steering of spatial gap solitons,” Phys. Rev. Lett. 93, 083905 (2004).
    [CrossRef] [PubMed]
  26. M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
    [CrossRef] [PubMed]
  27. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
    [CrossRef]
  28. J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
    [CrossRef] [PubMed]
  29. S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610–1612 (1996).
    [CrossRef]
  30. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
    [CrossRef] [PubMed]
  31. M. Segev, B. Crosignani, P. DiPorto, G. C. Valley, and A. Yariv, “Steady state spatial screening-solitons in photorefractive media with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
    [CrossRef] [PubMed]
  32. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
    [CrossRef] [PubMed]
  33. G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
    [CrossRef] [PubMed]
  34. M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
    [CrossRef] [PubMed]
  35. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997).
    [CrossRef]
  36. J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
    [CrossRef] [PubMed]
  37. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
    [CrossRef] [PubMed]
  38. O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
    [CrossRef] [PubMed]
  39. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92, 123902 (2004).
    [CrossRef] [PubMed]
  40. Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. 92, 143902 (2004).
    [CrossRef] [PubMed]
  41. J. Yang, I. Makasynk, A. Bezryadina, and Z. Chen, “Dipole solitons in optically-induced two-dimensional photonic lattices,” Opt. Lett. 29, 1662–1664 (2004).
    [CrossRef] [PubMed]
  42. Z. Chen, A. Bezryadina, I. Makasynk, and J. Yang, “Observation of two-dimensional vector lattice solitons,” Opt. Lett. 29, 1656–1658 (2004).
    [CrossRef] [PubMed]
  43. M. Stepic, D. Kip, Lj. Hadzievski, and A. Maluckov, “One-dimensional bright discrete solitons in media with saturable nonlinearity,” Phys. Rev. E 69, 066618 (2004).
    [CrossRef]
  44. K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig: “Photorefractive properties of lithium niobate volume crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
    [CrossRef]
  45. H. Yoshida, “Construction of higher order sympletic integrators,” Phys. Lett. A 150, 262–269 (1990).
    [CrossRef]
  46. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison: “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
    [CrossRef] [PubMed]
  47. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett. 29, 468–470 (2004).
    [CrossRef] [PubMed]
  48. The long response time is a result of the Cu doping and the low photoconductivity of our sample. Very recently we have fabricated samples with Fe doping where the response time can be shortened to about 100 s.
  49. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
    [CrossRef]

2005 (1)

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

2004 (13)

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. 92, 143902 (2004).
[CrossRef] [PubMed]

J. Yang, I. Makasynk, A. Bezryadina, and Z. Chen, “Dipole solitons in optically-induced two-dimensional photonic lattices,” Opt. Lett. 29, 1662–1664 (2004).
[CrossRef] [PubMed]

Z. Chen, A. Bezryadina, I. Makasynk, and J. Yang, “Observation of two-dimensional vector lattice solitons,” Opt. Lett. 29, 1656–1658 (2004).
[CrossRef] [PubMed]

M. Stepic, D. Kip, Lj. Hadzievski, and A. Maluckov, “One-dimensional bright discrete solitons in media with saturable nonlinearity,” Phys. Rev. E 69, 066618 (2004).
[CrossRef]

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[CrossRef] [PubMed]

D. N. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, “Controlled generation and steering of spatial gap solitons,” Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

O. Manela, O. Cohen, G. Bartal, J. W. Fleischer, and M. Segev, “Two-dimensional higher-band vortex lattice solitons,” Opt. Lett. 29, 2049–2051 (2004).
[CrossRef] [PubMed]

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton trains in photonic lattices,” Opt. Express 12, 2831–2837 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett. 29, 468–470 (2004).
[CrossRef] [PubMed]

2003 (8)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[CrossRef] [PubMed]

D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[CrossRef] [PubMed]

O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003).
[CrossRef] [PubMed]

A. A. Sukhorukov and Y.S. Kivshar, “Multigap discrete vector solitons,” Phys. Rev. Lett. 91, 113902 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef] [PubMed]

D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710–712 (2003).
[CrossRef] [PubMed]

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

2002 (1)

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[CrossRef]

2001 (1)

A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
[CrossRef] [PubMed]

2000 (5)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig: “Photorefractive properties of lithium niobate volume crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

E. Trias, J. J. Mazo, and T. P. Orlando, “Discrete breathers in nonlinear lattices: experimental detection in Josephson junctions,” Phys. Rev. Lett. 84, 741–744 (2000).
[CrossRef] [PubMed]

P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, “Observation of breathers in Josephson ladders,” Phys. Rev. Lett. 84, 745–748 (2000).
[CrossRef] [PubMed]

A. H. Xie, L. van der Meer, V. Hoff, and R. H. Austin, “Long-lived amide I vibrational modes in myoglobin,” Phys. Rev. Lett. 84, 5435–5438 (2000).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison: “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[CrossRef] [PubMed]

1999 (2)

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

U. T. Schwartz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnets,” Phys. Rev. Lett. 83, 223–226 (1999).
[CrossRef]

1998 (2)

S. Darmanyan, A. Kobyakov, and F. Lederer, “Stability of strongly localized excitations in discrete media with cubic nonlinearity,” JETP 86, 682–686 (1998).
[CrossRef]

H. S. Eisenberg, Y. Silberberg, Y. Morandotti, R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[CrossRef]

1997 (2)

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997).
[CrossRef]

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
[CrossRef]

1996 (1)

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610–1612 (1996).
[CrossRef]

1995 (1)

M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[CrossRef] [PubMed]

1994 (3)

M. Segev, B. Crosignani, P. DiPorto, G. C. Valley, and A. Yariv, “Steady state spatial screening-solitons in photorefractive media with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

1993 (3)

Y. S. Kivshar, “Self-localization in arrays of defocusing waveguides,” Opt. Lett. 20, 1147–1149 (1993).
[CrossRef]

J. Feng, “Alternative scheme for studying gap solitons in infinite periodic Kerr media,” Opt. Lett. 20, 1302–1304 (1993).
[CrossRef]

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

1992 (1)

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

1990 (1)

H. Yoshida, “Construction of higher order sympletic integrators,” Phys. Lett. A 150, 262–269 (1990).
[CrossRef]

1988 (1)

D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 19, 794–796 (1988).
[CrossRef]

Abraimov, D.

P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, “Observation of breathers in Josephson ladders,” Phys. Rev. Lett. 84, 745–748 (2000).
[CrossRef] [PubMed]

Aitchison, J. S.

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[CrossRef] [PubMed]

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison: “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, Y. Morandotti, R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[CrossRef]

Albiez, M.

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

Alexander, T. J.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

Anker, Th.

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

Austin, R. H.

A. H. Xie, L. van der Meer, V. Hoff, and R. H. Austin, “Long-lived amide I vibrational modes in myoglobin,” Phys. Rev. Lett. 84, 5435–5438 (2000).
[CrossRef] [PubMed]

Bartal, G.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

O. Manela, O. Cohen, G. Bartal, J. W. Fleischer, and M. Segev, “Two-dimensional higher-band vortex lattice solitons,” Opt. Lett. 29, 2049–2051 (2004).
[CrossRef] [PubMed]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of 2nd-band vortex solitons in 2D photonic lattices,” submitted to Phys. Rev. Lett.

Bashaw, M.

M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[CrossRef] [PubMed]

Bashaw, M. C.

Bezryadina, A.

Binder, P.

P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, “Observation of breathers in Josephson ladders,” Phys. Rev. Lett. 84, 745–748 (2000).
[CrossRef] [PubMed]

Bishop, A. R.

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

Boyd, R.

H. S. Eisenberg, Y. Silberberg, Y. Morandotti, R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[CrossRef]

Brozik, J. A.

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

Buljan, H.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

Burghoff, J.

Buse, K.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig: “Photorefractive properties of lithium niobate volume crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

Carmon, T.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Chen, Z.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. 92, 143902 (2004).
[CrossRef] [PubMed]

J. Yang, I. Makasynk, A. Bezryadina, and Z. Chen, “Dipole solitons in optically-induced two-dimensional photonic lattices,” Opt. Lett. 29, 1662–1664 (2004).
[CrossRef] [PubMed]

Z. Chen, A. Bezryadina, I. Makasynk, and J. Yang, “Observation of two-dimensional vector lattice solitons,” Opt. Lett. 29, 1656–1658 (2004).
[CrossRef] [PubMed]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997).
[CrossRef]

Christodoulides, D. N.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef] [PubMed]

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[CrossRef]

D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 19, 794–796 (1988).
[CrossRef]

Cohen, O.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

O. Manela, O. Cohen, G. Bartal, J. W. Fleischer, and M. Segev, “Two-dimensional higher-band vortex lattice solitons,” Opt. Lett. 29, 2049–2051 (2004).
[CrossRef] [PubMed]

O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003).
[CrossRef] [PubMed]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of 2nd-band vortex solitons in 2D photonic lattices,” submitted to Phys. Rev. Lett.

Crosignani, B.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. DiPorto, G. C. Valley, and A. Yariv, “Steady state spatial screening-solitons in photorefractive media with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

Darmanyan, S.

S. Darmanyan, A. Kobyakov, and F. Lederer, “Stability of strongly localized excitations in discrete media with cubic nonlinearity,” JETP 86, 682–686 (1998).
[CrossRef]

Davydov, A. S.

A. S. Davydov, Solitons in Molecular Systems (Kluwer Academic, Dordrecht, 1991).

DiPorto, P.

M. Segev, B. Crosignani, P. DiPorto, G. C. Valley, and A. Yariv, “Steady state spatial screening-solitons in photorefractive media with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

Duree, G.

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

Efremidis, N. K.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[CrossRef]

Eiermann, B.

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

Eisenberg, H. S.

D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison: “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, Y. Morandotti, R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[CrossRef]

English, L. Q.

U. T. Schwartz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnets,” Phys. Rev. Lett. 83, 223–226 (1999).
[CrossRef]

Eugenieva, E. D.

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. 92, 143902 (2004).
[CrossRef] [PubMed]

Fejer, M.

M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[CrossRef] [PubMed]

Fejer, M. M.

Feng, J.

J. Feng, “Alternative scheme for studying gap solitons in infinite periodic Kerr media,” Opt. Lett. 20, 1302–1304 (1993).
[CrossRef]

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

Flach, S.

P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, “Observation of breathers in Josephson ladders,” Phys. Rev. Lett. 84, 745–748 (2000).
[CrossRef] [PubMed]

Fleischer, J. W.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

O. Manela, O. Cohen, G. Bartal, J. W. Fleischer, and M. Segev, “Two-dimensional higher-band vortex lattice solitons,” Opt. Lett. 29, 2049–2051 (2004).
[CrossRef] [PubMed]

O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[CrossRef]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of 2nd-band vortex solitons in 2D photonic lattices,” submitted to Phys. Rev. Lett.

Hadzievski, Lj.

M. Stepic, D. Kip, Lj. Hadzievski, and A. Maluckov, “One-dimensional bright discrete solitons in media with saturable nonlinearity,” Phys. Rev. E 69, 066618 (2004).
[CrossRef]

Hanna, B.

D. N. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, “Controlled generation and steering of spatial gap solitons,” Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

Hoff, V.

A. H. Xie, L. van der Meer, V. Hoff, and R. H. Austin, “Long-lived amide I vibrational modes in myoglobin,” Phys. Rev. Lett. 84, 5435–5438 (2000).
[CrossRef] [PubMed]

Hudock, J.

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

Hukriede, J.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig: “Photorefractive properties of lithium niobate volume crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

Joseph, R. I.

D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 19, 794–796 (1988).
[CrossRef]

Kartashov, Y. V.

Kip, D.

M. Stepic, D. Kip, Lj. Hadzievski, and A. Maluckov, “One-dimensional bright discrete solitons in media with saturable nonlinearity,” Phys. Rev. E 69, 066618 (2004).
[CrossRef]

Kivshar, Y.

Kivshar, Y. S.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

D. N. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, “Controlled generation and steering of spatial gap solitons,” Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

Y. S. Kivshar, “Self-localization in arrays of defocusing waveguides,” Opt. Lett. 20, 1147–1149 (1993).
[CrossRef]

Kivshar, Y.S.

A. A. Sukhorukov and Y.S. Kivshar, “Multigap discrete vector solitons,” Phys. Rev. Lett. 91, 113902 (2003).
[CrossRef] [PubMed]

Kobyakov, A.

S. Darmanyan, A. Kobyakov, and F. Lederer, “Stability of strongly localized excitations in discrete media with cubic nonlinearity,” JETP 86, 682–686 (1998).
[CrossRef]

Krätzig, E.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig: “Photorefractive properties of lithium niobate volume crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

Krolikowski, W.

D. N. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, “Controlled generation and steering of spatial gap solitons,” Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710–712 (2003).
[CrossRef] [PubMed]

Lederer, F.

T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett. 29, 468–470 (2004).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef] [PubMed]

S. Darmanyan, A. Kobyakov, and F. Lederer, “Stability of strongly localized excitations in discrete media with cubic nonlinearity,” JETP 86, 682–686 (1998).
[CrossRef]

Love, S. P.

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

Makasynk, I.

Makasyuk, I.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

Maker, P. D.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997).
[CrossRef]

Maluckov, A.

M. Stepic, D. Kip, Lj. Hadzievski, and A. Maluckov, “One-dimensional bright discrete solitons in media with saturable nonlinearity,” Phys. Rev. E 69, 066618 (2004).
[CrossRef]

Mandelik, D.

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[CrossRef] [PubMed]

D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[CrossRef] [PubMed]

Manela, O.

O. Manela, O. Cohen, G. Bartal, J. W. Fleischer, and M. Segev, “Two-dimensional higher-band vortex lattice solitons,” Opt. Lett. 29, 2049–2051 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of 2nd-band vortex solitons in 2D photonic lattices,” submitted to Phys. Rev. Lett.

Martin, H.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. 92, 143902 (2004).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

Marzlin, K.-P.

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

Mazo, J. J.

E. Trias, J. J. Mazo, and T. P. Orlando, “Discrete breathers in nonlinear lattices: experimental detection in Josephson junctions,” Phys. Rev. Lett. 84, 741–744 (2000).
[CrossRef] [PubMed]

Meier, J.

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

Morandotti, R.

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[CrossRef] [PubMed]

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison: “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[CrossRef] [PubMed]

Morandotti, Y.

H. S. Eisenberg, Y. Silberberg, Y. Morandotti, R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[CrossRef]

Muller, R. E.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997).
[CrossRef]

Neshev, D.

Neshev, D. N.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

D. N. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, “Controlled generation and steering of spatial gap solitons,” Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

Neurgaonkar, R. R.

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

Nolte, S.

Oberthaler, M. K.

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

Orlando, T. P.

E. Trias, J. J. Mazo, and T. P. Orlando, “Discrete breathers in nonlinear lattices: experimental detection in Josephson junctions,” Phys. Rev. Lett. 84, 741–744 (2000).
[CrossRef] [PubMed]

Orlov, S.

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610–1612 (1996).
[CrossRef]

Ostrovskaya, E.

Ostrovskaya, E. A.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

Peithmann, K.

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig: “Photorefractive properties of lithium niobate volume crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

Pertsch, T.

Peschel, U.

Porto, P. D.

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

Salamo, G.

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

Salkola, M. I.

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

Schwartz, T.

O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003).
[CrossRef] [PubMed]

Schwartz, U. T.

U. T. Schwartz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnets,” Phys. Rev. Lett. 83, 223–226 (1999).
[CrossRef]

Sears, S.

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[CrossRef]

Segev, M.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

O. Manela, O. Cohen, G. Bartal, J. W. Fleischer, and M. Segev, “Two-dimensional higher-band vortex lattice solitons,” Opt. Lett. 29, 2049–2051 (2004).
[CrossRef] [PubMed]

O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[CrossRef]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997).
[CrossRef]

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
[CrossRef]

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610–1612 (1996).
[CrossRef]

M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. DiPorto, G. C. Valley, and A. Yariv, “Steady state spatial screening-solitons in photorefractive media with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of 2nd-band vortex solitons in 2D photonic lattices,” submitted to Phys. Rev. Lett.

Sharp, E.

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

Shreve, A. P.

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

Shultz, J.

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

Sievers, A. J.

U. T. Schwartz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnets,” Phys. Rev. Lett. 83, 223–226 (1999).
[CrossRef]

Silberberg, Y.

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[CrossRef] [PubMed]

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef] [PubMed]

D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison: “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, Y. Morandotti, R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[CrossRef]

Smerzi, A.

A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
[CrossRef] [PubMed]

Stegeman, G.

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

Stepic, M.

M. Stepic, D. Kip, Lj. Hadzievski, and A. Maluckov, “One-dimensional bright discrete solitons in media with saturable nonlinearity,” Phys. Rev. E 69, 066618 (2004).
[CrossRef]

Strouse, G. F.

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

Sukhorukov, A. A.

D. N. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, “Controlled generation and steering of spatial gap solitons,” Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

A. A. Sukhorukov and Y.S. Kivshar, “Multigap discrete vector solitons,” Phys. Rev. Lett. 91, 113902 (2003).
[CrossRef] [PubMed]

Swanson, B. I.

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

Taglieber, M.

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

Taya, M.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
[CrossRef]

M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[CrossRef] [PubMed]

Torner, L.

Treutlein, P.

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

Trias, E.

E. Trias, J. J. Mazo, and T. P. Orlando, “Discrete breathers in nonlinear lattices: experimental detection in Josephson junctions,” Phys. Rev. Lett. 84, 741–744 (2000).
[CrossRef] [PubMed]

Trombettoni, A.

A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
[CrossRef] [PubMed]

Tünnermann, A.

Ustinov, A. V.

P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, “Observation of breathers in Josephson ladders,” Phys. Rev. Lett. 84, 745–748 (2000).
[CrossRef] [PubMed]

Valley, G. C.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
[CrossRef]

M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. DiPorto, G. C. Valley, and A. Yariv, “Steady state spatial screening-solitons in photorefractive media with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

van der Meer, L.

A. H. Xie, L. van der Meer, V. Hoff, and R. H. Austin, “Long-lived amide I vibrational modes in myoglobin,” Phys. Rev. Lett. 84, 5435–5438 (2000).
[CrossRef] [PubMed]

Vysloukh, V. A.

Wang, W.-Z.

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

Will, M.

Wilson, D. W.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997).
[CrossRef]

Xie, A. H.

A. H. Xie, L. van der Meer, V. Hoff, and R. H. Austin, “Long-lived amide I vibrational modes in myoglobin,” Phys. Rev. Lett. 84, 5435–5438 (2000).
[CrossRef] [PubMed]

Xu, J.

Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. 92, 143902 (2004).
[CrossRef] [PubMed]

Yang, J.

Yariv, A.

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610–1612 (1996).
[CrossRef]

M. Segev, B. Crosignani, P. DiPorto, G. C. Valley, and A. Yariv, “Steady state spatial screening-solitons in photorefractive media with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[CrossRef] [PubMed]

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

Yoshida, H.

H. Yoshida, “Construction of higher order sympletic integrators,” Phys. Lett. A 150, 262–269 (1990).
[CrossRef]

Zolotaryuk, Y.

P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, “Observation of breathers in Josephson ladders,” Phys. Rev. Lett. 84, 745–748 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610–1612 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP (1)

S. Darmanyan, A. Kobyakov, and F. Lederer, “Stability of strongly localized excitations in discrete media with cubic nonlinearity,” JETP 86, 682–686 (1998).
[CrossRef]

Nature (3)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef] [PubMed]

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature 433, 500–503 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (8)

Phys. Lett. A (1)

H. Yoshida, “Construction of higher order sympletic integrators,” Phys. Lett. A 150, 262–269 (1990).
[CrossRef]

Phys. Rev. A (2)

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw, “Bright and dark photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[CrossRef] [PubMed]

M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (1)

K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig: “Photorefractive properties of lithium niobate volume crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000).
[CrossRef]

Phys. Rev. E (2)

M. Stepic, D. Kip, Lj. Hadzievski, and A. Maluckov, “One-dimensional bright discrete solitons in media with saturable nonlinearity,” Phys. Rev. E 69, 066618 (2004).
[CrossRef]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[CrossRef]

Phys. Rev. Lett. (25)

J. Meier, J. Hudock, D. N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Discrete vector solitons in Kerr nonlinear waveguide arrays,” Phys. Rev. Lett. 91, 143907 (2003).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. DiPorto, G. C. Valley, and A. Yariv, “Steady state spatial screening-solitons in photorefractive media with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90, 053902 (2003).
[CrossRef] [PubMed]

O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003).
[CrossRef] [PubMed]

A. A. Sukhorukov and Y.S. Kivshar, “Multigap discrete vector solitons,” Phys. Rev. Lett. 91, 113902 (2003).
[CrossRef] [PubMed]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997).
[CrossRef]

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring ‘discrete’ solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004).
[CrossRef] [PubMed]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004).
[CrossRef] [PubMed]

G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. 92, 143902 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, Y. Morandotti, R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
[CrossRef]

A. H. Xie, L. van der Meer, V. Hoff, and R. H. Austin, “Long-lived amide I vibrational modes in myoglobin,” Phys. Rev. Lett. 84, 5435–5438 (2000).
[CrossRef] [PubMed]

B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, “Observation of intrinsically localized modes in a discrete low-dimensional material,” Phys. Rev. Lett. 82, 3288–3291 (1999).
[CrossRef]

U. T. Schwartz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnets,” Phys. Rev. Lett. 83, 223–226 (1999).
[CrossRef]

E. Trias, J. J. Mazo, and T. P. Orlando, “Discrete breathers in nonlinear lattices: experimental detection in Josephson junctions,” Phys. Rev. Lett. 84, 741–744 (2000).
[CrossRef] [PubMed]

P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, “Observation of breathers in Josephson ladders,” Phys. Rev. Lett. 84, 745–748 (2000).
[CrossRef] [PubMed]

A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose-Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001).
[CrossRef] [PubMed]

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, “Bright Bose-Einstein gap solitons of atoms with repulsive interaction,” Phys. Rev. Lett. 92, 230401 (2004).
[CrossRef] [PubMed]

D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg, “Gap solitons in waveguide arrays,” Phys. Rev. Lett. 92, 093904 (2004).
[CrossRef] [PubMed]

D. N. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and Y. S. Kivshar, “Controlled generation and steering of spatial gap solitons,” Phys. Rev. Lett. 93, 083905 (2004).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison: “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[CrossRef] [PubMed]

Other (3)

The long response time is a result of the Cu doping and the low photoconductivity of our sample. Very recently we have fabricated samples with Fe doping where the response time can be shortened to about 100 s.

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of 2nd-band vortex solitons in 2D photonic lattices,” submitted to Phys. Rev. Lett.

A. S. Davydov, Solitons in Molecular Systems (Kluwer Academic, Dordrecht, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Refractive index profiles n(z) of a LiNbO3 waveguide array at two different depths of the in-diffused structures: at the depth of maximum field amplitude of the modes (dash-dotted line) and at a depth where the amplitude has dropped by a factor 1/e (solid line). The substrate refractive index is 2.242 (dotted line at the bottom).

Fig. 2.
Fig. 2.

Experimental set-up: P, polarizer; λ/2, half-wave plate; M 1,2, mirrors; GP, thin glass plate; CL, cylindrical lens; L 1,2, microscope lenses; WA, waveguide array; CCD, CCD camera. The light source is a 514.5 nm wavelength argon ion laser.

Fig. 3.
Fig. 3.

Experimental (a) and theoretical (b,c) results showing discrete diffraction of light in a LiNbO3 waveguide array, when a single input channel is excited. The upper part in (a) shows the intensity distribution at the output of the waveguide array, as photographed with a CCD camera. The two lower parts (b) and (c) show the simulated propagation of a beam in a waveguide array under the same parameters, at the “depth” of the maximum intensity of each individual mode.

Fig. 4.
Fig. 4.

Band-gap diagram of the waveguide array, relating the propagation constant β to the Bloch wave number Kz as described in section 2. The value “0” corresponds to a plane wave propagating in the substrate. The shaded regions represent the gaps where light propagation is forbidden. The black dot at the edge of the first band indicates the propagation constant of the gap soliton (shown in Fig. 7). Increasing the optical intensity creates a negative defect in the periodic structure, thereby localizing the corresponding Bloch wave by pushing its propagation constant β down into the gap, thus converting it from an extended Bloch wave into a self-localized state: a gap soliton.

Fig. 5.
Fig. 5.

Probing diffraction in the periodic waveguide array by varying the angle of incidence of a four-channel input beam, from Kz =0 (solid line), to nearly diffraction-free propagation at Kz ≈±π/2Λ(dotted and dashed lines).

Fig. 6.
Fig. 6.

Formation of a gap soliton in a 1D LiNbO3 waveguide array. The figure shows a line scan of the light intensity distribution measured by a CCD at the output facet of the array, where the dotted, dashed and solid lines represent the intensity profile at times t≈0, t=45 min, and t=160 min, respectively.

Fig. 7.
Fig. 7.

Calculated wavefunction and propagation dynamic of a spatial gap soliton in our setting. Left and middle panels: amplitude and intensity of a gap soliton (solid line) plotted on the background of the waveguide structure with the light-induced (negative) defect the soliton creates (dotted lines). Right panel: simulated stable and stationary propagation of the gap soliton in the waveguide array. The intensity profile of the soliton shown propagating in the right panel corresponds to the intensity of the soliton shown on the left panel.

Fig. 8.
Fig. 8.

Numerical results for the nonlinear propagation of a Gaussian beam with a π phase jump at its center (a dipole): a), b), the beam is launched normal to the waveguide array, and c), d), the same input beam is launched with a tilt of 2 mrad into the array. In both cases the input power is 16 µW and the input beam covers about half a lattice constant (FWHM of the Gaussian beam of 4.2 µm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i d E d y + 1 2 k d 2 E d z 2 + k ( n ( z ) + Δ n n ) E = 0 .
Δ n = 1 2 n 3 r E p v I I + I d ,
1 2 k d 2 U d z 2 + i K z k d U d z K z 2 2 k U + k n ( z ) n U = β U .

Metrics