Abstract

We have performed modeling of fluorescence signals from inclusions inside turbid media to investigate the influence of a limited fluorescence contrast and how accurately the depth can be determined by using the spectral information. The depth was determined by forming a ratio of simulated fluorescence intensities at two wavelengths. The results show that it is important to consider the background autofluorescence in determining the depth of a fluorescent inclusion. It is also necessary to know the optical properties of the tissue to obtain the depth. A 20% error in absorption or scattering coefficients yields an error in the determined depth of approximately 2–3 mm (relative error of 10–15%) in a 20 mm thick tissue slab.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gross and D Piwnica-Worms, “Spying on cancer: Molecular imaging in vivo with genetically encoded reporters,” Cancer Cells. 7, 5–15 (2005).
    [CrossRef]
  2. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects:seeing fundamental biological processes in a new light,” Genes & Development. 17, 545–580 (2003).
    [CrossRef] [PubMed]
  3. K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, “Molecular imaging of gene therapy for cancer,” Gene Therapy. 11, 1175–1187 (2004).
    [CrossRef] [PubMed]
  4. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2002).
  5. C. Bremer, V. Ntziachristos, and R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. Radiol. 13, 231–243 (2003).
    [PubMed]
  6. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Medicine. 8, 757–760 (2002).
    [CrossRef] [PubMed]
  7. V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Molecular Imaging. 1, 82–88 (2002).
    [CrossRef]
  8. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
    [CrossRef] [PubMed]
  9. X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
    [CrossRef] [PubMed]
  10. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
    [CrossRef] [PubMed]
  11. J. Swartling, J. Svensson, D Bengtsson, K Terike, and S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44, 1934–1941 (2005).
    [CrossRef] [PubMed]
  12. S. Avrillier, E. Tinet, D. Ettori, J.-M. Tualle, and B. Gélébart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
    [CrossRef]
  13. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
    [CrossRef] [PubMed]
  14. Q. Liu and N. Ramanujam, “Experimental proof of the feasibility of using fiber-optic probe for depth-sensitve fluorescence spectroscopy of turbid media,” Opt Lett. 29, 2034–2036 (2004).
    [CrossRef] [PubMed]
  15. Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
    [CrossRef] [PubMed]
  16. M. G. Muller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001).
    [CrossRef]
  17. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt Lett. 28, 120–122 (2003).
    [CrossRef] [PubMed]
  18. S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
    [CrossRef]
  19. T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz , “Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).
  20. E. L. Hull, M. G. Nichols, and T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
    [CrossRef]
  21. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
    [CrossRef] [PubMed]
  22. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  23. J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A. 20, 714–727 (2003).
    [CrossRef]
  24. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
    [CrossRef] [PubMed]
  25. S. A. Prah,. “Optical Absorption of Hemoglobin.” (Oregon Medical Laser Center, 2004), http://omlc.ogi.edu/spectra/hemoglobin/index.html
  26. S. Montán, K. Svanberg, and S. Svanberg, “Multi-color imaging and contrast enhancement in cancer tumor localization using laser-induced fluorescence in hematoporphyrin derivative (HpD)-bearing tissue,” Opt. Lett. 10, 56–58 (1985).
    [CrossRef] [PubMed]
  27. K. M. Yoo, F. Liu, and R. R. Alfano, “Imaging through a scattering wall using absorption,” Opt. Lett. 16, 1068–1070 (1991).
    [CrossRef] [PubMed]
  28. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).
  29. C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
    [CrossRef] [PubMed]
  30. N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
    [CrossRef] [PubMed]
  31. V. V. Verkhusha and K. A. Lukyanov, “The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins,” Nature Biotechnology. 22, 289–296 (2004).
    [CrossRef] [PubMed]
  32. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems. 15, R41–R93 (1999)
    [CrossRef]

2005 (4)

S. Gross and D Piwnica-Worms, “Spying on cancer: Molecular imaging in vivo with genetically encoded reporters,” Cancer Cells. 7, 5–15 (2005).
[CrossRef]

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
[CrossRef] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

J. Swartling, J. Svensson, D Bengtsson, K Terike, and S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44, 1934–1941 (2005).
[CrossRef] [PubMed]

2004 (4)

K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, “Molecular imaging of gene therapy for cancer,” Gene Therapy. 11, 1175–1187 (2004).
[CrossRef] [PubMed]

Q. Liu and N. Ramanujam, “Experimental proof of the feasibility of using fiber-optic probe for depth-sensitve fluorescence spectroscopy of turbid media,” Opt Lett. 29, 2034–2036 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

V. V. Verkhusha and K. A. Lukyanov, “The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins,” Nature Biotechnology. 22, 289–296 (2004).
[CrossRef] [PubMed]

2003 (5)

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A. 20, 714–727 (2003).
[CrossRef]

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

C. Bremer, V. Ntziachristos, and R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. Radiol. 13, 231–243 (2003).
[PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects:seeing fundamental biological processes in a new light,” Genes & Development. 17, 545–580 (2003).
[CrossRef] [PubMed]

2002 (3)

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2002).

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Medicine. 8, 757–760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Molecular Imaging. 1, 82–88 (2002).
[CrossRef]

2001 (2)

M. G. Muller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001).
[CrossRef]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

1999 (2)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems. 15, R41–R93 (1999)
[CrossRef]

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

1998 (2)

1996 (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

1991 (1)

1989 (2)

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
[CrossRef]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

1985 (1)

Alfano, R. R.

Andersson-Engels, S.

J. Swartling, J. Svensson, D Bengtsson, K Terike, and S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44, 1934–1941 (2005).
[CrossRef] [PubMed]

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A. 20, 714–727 (2003).
[CrossRef]

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
[CrossRef]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems. 15, R41–R93 (1999)
[CrossRef]

Atkinson, N.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Avrillier, S.

Bengtsson, D

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Bogdanov, A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

Breakefield, X. O.

K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, “Molecular imaging of gene therapy for cancer,” Gene Therapy. 11, 1175–1187 (2004).
[CrossRef] [PubMed]

Bremer, C.

C. Bremer, V. Ntziachristos, and R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. Radiol. 13, 231–243 (2003).
[PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2002).

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Medicine. 8, 757–760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Molecular Imaging. 1, 82–88 (2002).
[CrossRef]

Cubeddu, R.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Ediger, M. N.

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

Eker, C.

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

Enejder, A. M. K.

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A. 20, 714–727 (2003).
[CrossRef]

Ettori, D.

Feld, M. S.

Foster, T. H.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz , “Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects:seeing fundamental biological processes in a new light,” Genes & Development. 17, 545–580 (2003).
[CrossRef] [PubMed]

Gao, X

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
[CrossRef] [PubMed]

Gélébart, B.

Georgakoudi, I.

Giambattistelli, E.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Molecular Imaging. 1, 82–88 (2002).
[CrossRef]

Gross, S.

S. Gross and D Piwnica-Worms, “Spying on cancer: Molecular imaging in vivo with genetically encoded reporters,” Cancer Cells. 7, 5–15 (2005).
[CrossRef]

Gustafson, A.

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
[CrossRef]

Hull, E. L.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz , “Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).

Ingvar, C.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).

Jacobs, A.

K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, “Molecular imaging of gene therapy for cancer,” Gene Therapy. 11, 1175–1187 (2004).
[CrossRef] [PubMed]

Jacques, S. L.

Jaramillo, E.

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

Johansson, J.

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
[CrossRef]

Josephson, L.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

Keijzer, M.

Koizumi, K.

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Lindblom, P.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).

Liu, F.

Liu, Q.

Q. Liu and N. Ramanujam, “Experimental proof of the feasibility of using fiber-optic probe for depth-sensitve fluorescence spectroscopy of turbid media,” Opt Lett. 29, 2034–2036 (2004).
[CrossRef] [PubMed]

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

Lukyanov, K. A.

V. V. Verkhusha and K. A. Lukyanov, “The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins,” Nature Biotechnology. 22, 289–296 (2004).
[CrossRef] [PubMed]

Mahadevan-Jensen, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Malpica, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Marshall, F. F.

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
[CrossRef] [PubMed]

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects:seeing fundamental biological processes in a new light,” Genes & Development. 17, 545–580 (2003).
[CrossRef] [PubMed]

Matchette, L. S.

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Mitchell, M. F.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Montán, S.

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

S. Montán, K. Svanberg, and S. Svanberg, “Multi-color imaging and contrast enhancement in cancer tumor localization using laser-induced fluorescence in hematoporphyrin derivative (HpD)-bearing tissue,” Opt. Lett. 10, 56–58 (1985).
[CrossRef] [PubMed]

Muller, M. G.

Nichols, M. G.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz , “Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).

Nie, S.

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

C. Bremer, V. Ntziachristos, and R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. Radiol. 13, 231–243 (2003).
[PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Medicine. 8, 757–760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2002).

V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Molecular Imaging. 1, 82–88 (2002).
[CrossRef]

Osei, E. K.

Patterson, M. S.

Petros, J. A.

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
[CrossRef] [PubMed]

Pfefer, T. J.

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

Pifferi, A.

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A. 20, 714–727 (2003).
[CrossRef]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Piwnica-Worms, D

S. Gross and D Piwnica-Worms, “Spying on cancer: Molecular imaging in vivo with genetically encoded reporters,” Cancer Cells. 7, 5–15 (2005).
[CrossRef]

Pogue, B. W.

Prah, S. A.

S. A. Prah,. “Optical Absorption of Hemoglobin.” (Oregon Medical Laser Center, 2004), http://omlc.ogi.edu/spectra/hemoglobin/index.html

Ramanujam, N.

Q. Liu and N. Ramanujam, “Experimental proof of the feasibility of using fiber-optic probe for depth-sensitve fluorescence spectroscopy of turbid media,” Opt Lett. 29, 2034–2036 (2004).
[CrossRef] [PubMed]

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Richards-Kortum, R.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

Rifkin, D. S.

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz , “Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).

Ripoll, J.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Molecular Imaging. 1, 82–88 (2002).
[CrossRef]

Ross, A. M.

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

Rubio, C.

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

Schwartz, N.

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz , “Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).

Shah, K

K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, “Molecular imaging of gene therapy for cancer,” Gene Therapy. 11, 1175–1187 (2004).
[CrossRef] [PubMed]

Simons, J. W

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
[CrossRef] [PubMed]

Slezak, P.

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

Staerkel, G.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Stenram, U.

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
[CrossRef]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Svanberg, K.

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
[CrossRef]

S. Montán, K. Svanberg, and S. Svanberg, “Multi-color imaging and contrast enhancement in cancer tumor localization using laser-induced fluorescence in hematoporphyrin derivative (HpD)-bearing tissue,” Opt. Lett. 10, 56–58 (1985).
[CrossRef] [PubMed]

Svanberg, S.

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
[CrossRef]

S. Montán, K. Svanberg, and S. Svanberg, “Multi-color imaging and contrast enhancement in cancer tumor localization using laser-induced fluorescence in hematoporphyrin derivative (HpD)-bearing tissue,” Opt. Lett. 10, 56–58 (1985).
[CrossRef] [PubMed]

Svensson, J.

Svensson, T.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).

Swartling, J.

J. Swartling, J. Svensson, D Bengtsson, K Terike, and S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44, 1934–1941 (2005).
[CrossRef] [PubMed]

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A. 20, 714–727 (2003).
[CrossRef]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).

Taroni, P.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).

Terike, K

Thomsen, S. L.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Tinet, E.

Torricelli, A.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Tualle, J.-M.

Tung, C.-H.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Medicine. 8, 757–760 (2002).
[CrossRef] [PubMed]

Verkhusha, V. V.

V. V. Verkhusha and K. A. Lukyanov, “The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins,” Nature Biotechnology. 22, 289–296 (2004).
[CrossRef] [PubMed]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Weissleder, R.

K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, “Molecular imaging of gene therapy for cancer,” Gene Therapy. 11, 1175–1187 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

C. Bremer, V. Ntziachristos, and R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. Radiol. 13, 231–243 (2003).
[PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2002).

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Medicine. 8, 757–760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Molecular Imaging. 1, 82–88 (2002).
[CrossRef]

Wilson, B. C.

Wright, T.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Wu, J.

Yang, L

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
[CrossRef] [PubMed]

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

Yoo, K. M.

Zhang, Q.

Zhu, C.

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

Appl. Opt. (7)

J. Swartling, J. Svensson, D Bengtsson, K Terike, and S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44, 1934–1941 (2005).
[CrossRef] [PubMed]

S. Avrillier, E. Tinet, D. Ettori, J.-M. Tualle, and B. Gélébart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
[CrossRef]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

M. G. Muller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001).
[CrossRef]

E. L. Hull, M. G. Nichols, and T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998).
[CrossRef]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

Cancer Cells. (1)

S. Gross and D Piwnica-Worms, “Spying on cancer: Molecular imaging in vivo with genetically encoded reporters,” Cancer Cells. 7, 5–15 (2005).
[CrossRef]

Current Opinion in Biotechnology. (1)

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology. 16, 63–72 (2005).
[CrossRef] [PubMed]

Eur. Radiol. (2)

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2002).

C. Bremer, V. Ntziachristos, and R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. Radiol. 13, 231–243 (2003).
[PubMed]

Gene Therapy. (1)

K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, “Molecular imaging of gene therapy for cancer,” Gene Therapy. 11, 1175–1187 (2004).
[CrossRef] [PubMed]

Genes & Development. (1)

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects:seeing fundamental biological processes in a new light,” Genes & Development. 17, 545–580 (2003).
[CrossRef] [PubMed]

Gut. (1)

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, “Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation,” Gut. 44, 511–518 (1999).
[CrossRef] [PubMed]

Inverse Problems. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems. 15, R41–R93 (1999)
[CrossRef]

J. Biomed. Opt. (1)

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A. (1)

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A. 20, 714–727 (2003).
[CrossRef]

Lasers Med. Sci. (1)

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Laser-induced fluorescence used in localizing atherosclerotic lesions,” Lasers Med. Sci. 4, 171–181 (1989).
[CrossRef]

Molecular Imaging. (1)

V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Molecular Imaging. 1, 82–88 (2002).
[CrossRef]

Nature Biotechnology. (1)

V. V. Verkhusha and K. A. Lukyanov, “The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins,” Nature Biotechnology. 22, 289–296 (2004).
[CrossRef] [PubMed]

Nature Medicine. (1)

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Medicine. 8, 757–760 (2002).
[CrossRef] [PubMed]

Opt Lett. (2)

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

Q. Liu and N. Ramanujam, “Experimental proof of the feasibility of using fiber-optic probe for depth-sensitve fluorescence spectroscopy of turbid media,” Opt Lett. 29, 2034–2036 (2004).
[CrossRef] [PubMed]

Opt. Lett. (2)

Photochem. Photobiol. (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA. (1)

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. USA. 101, 12294–12299 (2004).
[CrossRef] [PubMed]

Science. (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging and diagnostics,” Science. 307, 538–544 (2005).
[CrossRef] [PubMed]

Other (3)

S. A. Prah,. “Optical Absorption of Hemoglobin.” (Oregon Medical Laser Center, 2004), http://omlc.ogi.edu/spectra/hemoglobin/index.html

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels. “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.” Phys. Med. Biol. (to be published).

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz , “Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the geometry used to simulate fluorescence with Monte Carlo calculations. It assumes a layered structure, where z denotes the thickness of the sample.

Fig. 2.
Fig. 2.

Left: the radial profile for the yellow fluorescent wavelength for depths of 13, 16 and 19 mm. Middle: the radial profile for the red fluorescence at the same depths, and right: the ratio between the yellow and the red fluorescence at the same depths.

Fig. 3.
Fig. 3.

Upper row: left, the distribution of the excitation light where the light can be absorbed; middle, the probability of fluorescence emitted at 540 nm to be detected at position r=0 and z=30; and right, the result of multiplying the excitation and emission images. Lower row: corresponding images for fluorescence emission light at 615 nm. The image in the lower left corner shows the distribution of the fluorescence emission inside the model with a fluorescence layer at z=4 mm and an infinite fluorescence contrast.

Fig. 4.
Fig. 4.

Logarithmic value of the yellow/red ratio as a function of depth for optical properties according to Table 2.

Fig. 5.
Fig. 5.

Ratio of the two intensities in a logarithmic scale as a function of depth, when the relative attenuation of the two wavelengths are changed.

Fig. 6.
Fig. 6.

Left: the detected yellow intensity as a function of the depth of the layer, middle: the corresponding for the red intensity and right: the yellow/red ratio. The legend corresponds to the contrast between the layer and the rest of the tissue model. c denotes the fluorescence contrast.

Tables (3)

Tables Icon

Table 1. Optical properties of the tissue model

Tables Icon

Table 2. The optical properties used to simulate the effects of changes in optical properties on the fluorescence ratio.

Tables Icon

Table 3. Absorption coefficient of the tissue model with different attenuation at the fluorescence wavelengths

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ = Γ ( 540 ) Γ ( 615 )
μ a ( λ ) = i c i ε i ( λ )
μ s ( λ ) = a λ b
μ eff = 3 μ a ( μ a + μ s )

Metrics