Abstract

We have performed modeling of fluorescence signals from inclusions inside turbid media to investigate the influence of a limited fluorescence contrast and how accurately the depth can be determined by using the spectral information. The depth was determined by forming a ratio of simulated fluorescence intensities at two wavelengths. The results show that it is important to consider the background autofluorescence in determining the depth of a fluorescent inclusion. It is also necessary to know the optical properties of the tissue to obtain the depth. A 20% error in absorption or scattering coefficients yields an error in the determined depth of approximately 2-3 mm (relative error of 10-15%) in a 20 mm thick tissue slab.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. S. Gross and D Piwnica-Worms, "Spying on cancer: Molecular imaging in vivo with genetically encoded reporters," Cancer Cells. 7, 5-15 (2005).
  2. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects:seeing fundamental biological processes in a new light," Genes & Development. 17, 545-580 (2003).
    [CrossRef]
  3. K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Therapy. 11, 1175-1187 (2004).
    [CrossRef]
  4. V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13, 195-208 (2002).
  5. C. Bremer, V. Ntziachristos, and R. Weissleder, "Optical-based molecular imaging: contrast agents and potential medical applications," Eur. Radiol. 13, 231-243 (2003).
  6. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Medicine. 8, 757-760 (2002).
    [CrossRef]
  7. V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging. 1, 82-88 (2002).
    [CrossRef]
  8. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. USA. 101, 12294-12299 (2004).
  9. X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Current Opinion in Biotechnology. 16, 63-72 (2005).
    [CrossRef]
  10. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging and diagnostics," Science. 307, 538-544 (2005).
    [CrossRef]
  11. J. Swartling, J. Svensson, D Bengtsson, K Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissue," Appl. Opt. 44, 1934-1941 (2005).
    [CrossRef]
  12. S. Avrillier, E. Tinet, D. Ettori, J.-M. Tualle, and B. Gélébart, "Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media," Appl. Opt. 37, 2781-2787 (1998).
  13. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
  14. Q. Liu and N. Ramanujam, "Experimental proof of the feasibility of using fiber-optic probe for depth-sensitve fluorescence spectroscopy of turbid media," Opt Lett. 29, 2034-2036 (2004).
    [CrossRef]
  15. Q. Liu, C. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003).
    [CrossRef]
  16. M. G. Muller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001).
  17. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt Lett. 28, 120-122 (2003).
  18. S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, "Laser-induced fluorescence used in localizing atherosclerotic lesions," Lasers Med. Sci. 4, 171-181 (1989).
    [CrossRef]
  19. T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz, "Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium" in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE 2979, 741-749 (1997).
  20. E. L. Hull, M. G. Nichols, and T. H. Foster, "Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance," Appl. Opt. 37, 2755-2765 (1998).
  21. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, "Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths," Appl. Opt. 34, 22-30 (1995).
  22. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
  23. J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, "Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues," J. Opt. Soc. Am. A. 20, 714-727 (2003).
  24. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, "In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy," Phys. Med. Biol. 46, 2227-2237 (2001).
    [CrossRef]
  25. S. A. Prah, "Optical Absorption of Hemoglobin" (Oregon Medical Laser Center, 2004), <a href="http://omlc.ogi.edu/spectra/hemoglobin/index.html">http://omlc.ogi.edu/spectra/hemoglobin/index.html</a>
  26. S. Montán, K. Svanberg, and S. Svanberg, "Multi-color imaging and contrast enhancement in cancer tumor localization using laser-induced fluorescence in hematoporphyrin derivative (HpD)-bearing tissue," Opt. Lett. 10, 56-58 (1985).
  27. K. M. Yoo, F. Liu, and R. R. Alfano, "Imaging through a scattering wall using absorption," Opt. Lett. 16, 1068-1070 (1991).
  28. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy." Phys. Med. Biol. (to be published).
  29. C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, "Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation," Gut. 44, 511-518 (1999).
  30. N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, "Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).
  31. V. V. Verkhusha and K. A. Lukyanov, "The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins," Nature Biotechnology. 22, 289-296 (2004).
    [CrossRef]
  32. S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems. 15, R41-R93 (1999).

Appl. Opt. (7)

Cancer Cells (1)

S. Gross and D Piwnica-Worms, "Spying on cancer: Molecular imaging in vivo with genetically encoded reporters," Cancer Cells. 7, 5-15 (2005).

Current Opinion in Biotechnology (1)

X Gao, L Yang, J. A. Petros, F. F. Marshall, J. W Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Current Opinion in Biotechnology. 16, 63-72 (2005).
[CrossRef]

Eur. Radiol (2)

V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13, 195-208 (2002).

C. Bremer, V. Ntziachristos, and R. Weissleder, "Optical-based molecular imaging: contrast agents and potential medical applications," Eur. Radiol. 13, 231-243 (2003).

Gene Therapy (1)

K Shah, A. Jacobs, X. O. Breakefield, and R. Weissleder, "Molecular imaging of gene therapy for cancer," Gene Therapy. 11, 1175-1187 (2004).
[CrossRef]

Genes & Development. (1)

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects:seeing fundamental biological processes in a new light," Genes & Development. 17, 545-580 (2003).
[CrossRef]

Gut. (1)

C. Eker, S. Montán, E. Jaramillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, and P. Slezak, "Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation," Gut. 44, 511-518 (1999).

Inverse Problems (1)

S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems. 15, R41-R93 (1999).

J. Biomed. Opt. (1)

Q. Liu, C. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003).
[CrossRef]

J. Opt. Soc. Am. A. (1)

J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, "Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues," J. Opt. Soc. Am. A. 20, 714-727 (2003).

Lasers Med. Sci. (1)

S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, "Laser-induced fluorescence used in localizing atherosclerotic lesions," Lasers Med. Sci. 4, 171-181 (1989).
[CrossRef]

Molecular Imaging (1)

V. Ntziachristos, C. Bremer, E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging. 1, 82-88 (2002).
[CrossRef]

Nature Biotechnology (1)

V. V. Verkhusha and K. A. Lukyanov, "The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins," Nature Biotechnology. 22, 289-296 (2004).
[CrossRef]

Nature Medicine (1)

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Medicine. 8, 757-760 (2002).
[CrossRef]

Opt Lett. (1)

Q. Liu and N. Ramanujam, "Experimental proof of the feasibility of using fiber-optic probe for depth-sensitve fluorescence spectroscopy of turbid media," Opt Lett. 29, 2034-2036 (2004).
[CrossRef]

Opt. Lett. (3)

Oregon Medical Laser Center (1)

S. A. Prah, "Optical Absorption of Hemoglobin" (Oregon Medical Laser Center, 2004), <a href="http://omlc.ogi.edu/spectra/hemoglobin/index.html">http://omlc.ogi.edu/spectra/hemoglobin/index.html</a>

Photochem. Photobiol. (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jensen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, "Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64, 720-735 (1996).

Phys. Med. Biol. (2)

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, "Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy." Phys. Med. Biol. (to be published).

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, "In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy," Phys. Med. Biol. 46, 2227-2237 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. USA. 101, 12294-12299 (2004).

Proc. SPIE (1)

T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, and N. Schwartz, "Two-steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium" in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE 2979, 741-749 (1997).

Science (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging and diagnostics," Science. 307, 538-544 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics