Abstract
We have built a new fisheye camera radiometer to measure the inwater spectral upwelling radiance distribution. This instrument measures the radiance distribution at six wavelengths and obtains a complete suite of measurements (6 spectral data images with associated dark images) in approximately 2 minutes (in clear water). This instrument is much smaller than previous instruments (0.3 m in diameter and 0.3 m long), decreasing the instrument selfshading. It also has improved performance resulting from enhanced sensor sensitivity and a more subtle lens rolloff effect. We describe the instrument, its characterization, and show data examples from both clear and turbid water.
© 2005 Optical Society of America
Full Article  PDF ArticleOSA Recommended Articles
Kenneth J. Voss and Nordine Souaidia
Opt. Express 18(19) 1967219680 (2010)
Kenneth J. Voss, Arthur C. R. Gleason, Howard R. Gordon, George W. Kattawar, and Yu You
Opt. Express 19(7) 59425952 (2011)
Jianwei Wei, Ronnie Van Dommelen, Marlon R. Lewis, Scott McLean, and Kenneth J. Voss
Opt. Express 20(24) 2702427038 (2012)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remotesensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[Crossref] [PubMed]  J. E. Tyler, “Radiance distribution as a function of depth in an underwater environment,” Bull. Scripps Inst. Oceanogr. 7, 363–41 (1960).
 E. Aas and N. K. Hojerslev, “Analysis of underwater radiance distribution observations: apparent optical properties and analytical functions describing the angular radiance distributions,” J. Geophys. Res. 104, 8015–8024 (1999).
[Crossref] 
K. Miyamoto, “Fish Eye Lens,” J. Opt. Soc. Am. 54, 1060–1061 (1964).
[Crossref] 
R. C. Smith, R. W. Austin, and J. E. Tyler, “An oceanographic radiance distribution camera system,” Appl. Opt. 9, 2015–2022 (1970).
[Crossref] [PubMed]  K. J. Voss, “Electrooptic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).
 K. J. Voss and A. L. Chapin , “Next generation inwater radiance distribution camera system,” in Ocean Optics XI, G. D. Gilbert, eds., Proc. SPIE1750, 384–387 (1992).
 K. J. Voss, C. D. Mobley, L. K. Sundman, J. Ivey, and C. Mazell, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[Crossref]  K. J. Voss and A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).
[Crossref]  J. P. Doyle and K. J. Voss, “3D Instrument SelfShading effects on inwater multidirectional radiance measurements,” presented at Ocean Optics XV, Monaco, 16–20 Oct. 2000.
 W. S. Helliwell, G. N. Sullivan, B. Macdonald, and K. J. Voss, “A finitedifference discreteordinate solution to the three dimensional radiative transfer equation,” Transport Theory and Statistical Physics 19, 333–356 (1990).
[Crossref]  K. J. Voss and G. Zibordi, “Radiometric and geometric calibration of a spectral electrooptic “fisheye’camera radiance distribution system,” J. Atmosph. and Ocean. Techn. 6, 652–662 (1989).
[Crossref]  F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, New Jersey, 1993).
 J. Piskozub, “Effect of ship shadow on inwater irradiance measurements,” Oceanologia 46, 103–112 (2004).

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref] [PubMed]  G. Zibordi and J.F. Berthon, “Relationships between the Qfactor and seawater optical properties in a coastal region,” Limnol. Oceanogr. 46, 1130–1140 (2001).
[Crossref]
2005 (1)
K. J. Voss and A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).
[Crossref]
2004 (1)
J. Piskozub, “Effect of ship shadow on inwater irradiance measurements,” Oceanologia 46, 103–112 (2004).
2003 (1)
K. J. Voss, C. D. Mobley, L. K. Sundman, J. Ivey, and C. Mazell, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[Crossref]
2002 (1)
A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]
[PubMed]
2001 (1)
G. Zibordi and J.F. Berthon, “Relationships between the Qfactor and seawater optical properties in a coastal region,” Limnol. Oceanogr. 46, 1130–1140 (2001).
[Crossref]
1999 (1)
E. Aas and N. K. Hojerslev, “Analysis of underwater radiance distribution observations: apparent optical properties and analytical functions describing the angular radiance distributions,” J. Geophys. Res. 104, 8015–8024 (1999).
[Crossref]
1996 (1)
A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remotesensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[Crossref]
[PubMed]
1990 (1)
W. S. Helliwell, G. N. Sullivan, B. Macdonald, and K. J. Voss, “A finitedifference discreteordinate solution to the three dimensional radiative transfer equation,” Transport Theory and Statistical Physics 19, 333–356 (1990).
[Crossref]
1989 (2)
K. J. Voss and G. Zibordi, “Radiometric and geometric calibration of a spectral electrooptic “fisheye’camera radiance distribution system,” J. Atmosph. and Ocean. Techn. 6, 652–662 (1989).
[Crossref]
K. J. Voss, “Electrooptic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).
1970 (1)
R. C. Smith, R. W. Austin, and J. E. Tyler, “An oceanographic radiance distribution camera system,” Appl. Opt. 9, 2015–2022 (1970).
[Crossref]
[PubMed]
1964 (1)
1960 (1)
J. E. Tyler, “Radiance distribution as a function of depth in an underwater environment,” Bull. Scripps Inst. Oceanogr. 7, 363–41 (1960).
Aas, E.
E. Aas and N. K. Hojerslev, “Analysis of underwater radiance distribution observations: apparent optical properties and analytical functions describing the angular radiance distributions,” J. Geophys. Res. 104, 8015–8024 (1999).
[Crossref]
Antoine, D.
A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]
[PubMed]
Austin, R. W.
R. C. Smith, R. W. Austin, and J. E. Tyler, “An oceanographic radiance distribution camera system,” Appl. Opt. 9, 2015–2022 (1970).
[Crossref]
[PubMed]
Berthon, J.F.
G. Zibordi and J.F. Berthon, “Relationships between the Qfactor and seawater optical properties in a coastal region,” Limnol. Oceanogr. 46, 1130–1140 (2001).
[Crossref]
Chapin, A. L.
K. J. Voss and A. L. Chapin , “Next generation inwater radiance distribution camera system,” in Ocean Optics XI, G. D. Gilbert, eds., Proc. SPIE1750, 384–387 (1992).
Doyle, J. P.
J. P. Doyle and K. J. Voss, “3D Instrument SelfShading effects on inwater multidirectional radiance measurements,” presented at Ocean Optics XV, Monaco, 16–20 Oct. 2000.
Gentili, B.
A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]
[PubMed]
A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remotesensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[Crossref]
[PubMed]
Helliwell, W. S.
W. S. Helliwell, G. N. Sullivan, B. Macdonald, and K. J. Voss, “A finitedifference discreteordinate solution to the three dimensional radiative transfer equation,” Transport Theory and Statistical Physics 19, 333–356 (1990).
[Crossref]
Hojerslev, N. K.
E. Aas and N. K. Hojerslev, “Analysis of underwater radiance distribution observations: apparent optical properties and analytical functions describing the angular radiance distributions,” J. Geophys. Res. 104, 8015–8024 (1999).
[Crossref]
Ivey, J.
K. J. Voss, C. D. Mobley, L. K. Sundman, J. Ivey, and C. Mazell, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[Crossref]
Macdonald, B.
W. S. Helliwell, G. N. Sullivan, B. Macdonald, and K. J. Voss, “A finitedifference discreteordinate solution to the three dimensional radiative transfer equation,” Transport Theory and Statistical Physics 19, 333–356 (1990).
[Crossref]
Mazell, C.
K. J. Voss, C. D. Mobley, L. K. Sundman, J. Ivey, and C. Mazell, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[Crossref]
Miyamoto, K.
Mobley, C. D.
K. J. Voss, C. D. Mobley, L. K. Sundman, J. Ivey, and C. Mazell, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[Crossref]
Morel, A.
K. J. Voss and A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).
[Crossref]
A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]
[PubMed]
A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remotesensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[Crossref]
[PubMed]
Pedrotti, F. L.
F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, New Jersey, 1993).
Pedrotti, L. S.
F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, New Jersey, 1993).
Piskozub, J.
J. Piskozub, “Effect of ship shadow on inwater irradiance measurements,” Oceanologia 46, 103–112 (2004).
Smith, R. C.
R. C. Smith, R. W. Austin, and J. E. Tyler, “An oceanographic radiance distribution camera system,” Appl. Opt. 9, 2015–2022 (1970).
[Crossref]
[PubMed]
Sullivan, G. N.
W. S. Helliwell, G. N. Sullivan, B. Macdonald, and K. J. Voss, “A finitedifference discreteordinate solution to the three dimensional radiative transfer equation,” Transport Theory and Statistical Physics 19, 333–356 (1990).
[Crossref]
Sundman, L. K.
K. J. Voss, C. D. Mobley, L. K. Sundman, J. Ivey, and C. Mazell, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[Crossref]
Tyler, J. E.
R. C. Smith, R. W. Austin, and J. E. Tyler, “An oceanographic radiance distribution camera system,” Appl. Opt. 9, 2015–2022 (1970).
[Crossref]
[PubMed]
J. E. Tyler, “Radiance distribution as a function of depth in an underwater environment,” Bull. Scripps Inst. Oceanogr. 7, 363–41 (1960).
Voss, K. J.
K. J. Voss and A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).
[Crossref]
K. J. Voss, C. D. Mobley, L. K. Sundman, J. Ivey, and C. Mazell, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[Crossref]
W. S. Helliwell, G. N. Sullivan, B. Macdonald, and K. J. Voss, “A finitedifference discreteordinate solution to the three dimensional radiative transfer equation,” Transport Theory and Statistical Physics 19, 333–356 (1990).
[Crossref]
K. J. Voss and G. Zibordi, “Radiometric and geometric calibration of a spectral electrooptic “fisheye’camera radiance distribution system,” J. Atmosph. and Ocean. Techn. 6, 652–662 (1989).
[Crossref]
K. J. Voss, “Electrooptic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).
K. J. Voss and A. L. Chapin , “Next generation inwater radiance distribution camera system,” in Ocean Optics XI, G. D. Gilbert, eds., Proc. SPIE1750, 384–387 (1992).
J. P. Doyle and K. J. Voss, “3D Instrument SelfShading effects on inwater multidirectional radiance measurements,” presented at Ocean Optics XV, Monaco, 16–20 Oct. 2000.
Zibordi, G.
G. Zibordi and J.F. Berthon, “Relationships between the Qfactor and seawater optical properties in a coastal region,” Limnol. Oceanogr. 46, 1130–1140 (2001).
[Crossref]
K. J. Voss and G. Zibordi, “Radiometric and geometric calibration of a spectral electrooptic “fisheye’camera radiance distribution system,” J. Atmosph. and Ocean. Techn. 6, 652–662 (1989).
[Crossref]
Appl. Opt. (3)
A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remotesensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[Crossref]
[PubMed]
R. C. Smith, R. W. Austin, and J. E. Tyler, “An oceanographic radiance distribution camera system,” Appl. Opt. 9, 2015–2022 (1970).
[Crossref]
[PubMed]
A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]
[PubMed]
Bull. Scripps Inst. Oceanogr. (1)
J. E. Tyler, “Radiance distribution as a function of depth in an underwater environment,” Bull. Scripps Inst. Oceanogr. 7, 363–41 (1960).
J. Atmosph. and Ocean. Techn. (1)
K. J. Voss and G. Zibordi, “Radiometric and geometric calibration of a spectral electrooptic “fisheye’camera radiance distribution system,” J. Atmosph. and Ocean. Techn. 6, 652–662 (1989).
[Crossref]
J. Geophys. Res. (1)
E. Aas and N. K. Hojerslev, “Analysis of underwater radiance distribution observations: apparent optical properties and analytical functions describing the angular radiance distributions,” J. Geophys. Res. 104, 8015–8024 (1999).
[Crossref]
J. Opt. Soc. Am. (1)
Limnol. Oceanogr. (3)
K. J. Voss, C. D. Mobley, L. K. Sundman, J. Ivey, and C. Mazell, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003).
[Crossref]
K. J. Voss and A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005).
[Crossref]
G. Zibordi and J.F. Berthon, “Relationships between the Qfactor and seawater optical properties in a coastal region,” Limnol. Oceanogr. 46, 1130–1140 (2001).
[Crossref]
Oceanologia (1)
J. Piskozub, “Effect of ship shadow on inwater irradiance measurements,” Oceanologia 46, 103–112 (2004).
Opt. Eng. (1)
K. J. Voss, “Electrooptic camera system for measurement of the underwater radiance distribution,” Opt. Eng. 28, 241–247 (1989).
Transport Theory and Statistical Physics (1)
W. S. Helliwell, G. N. Sullivan, B. Macdonald, and K. J. Voss, “A finitedifference discreteordinate solution to the three dimensional radiative transfer equation,” Transport Theory and Statistical Physics 19, 333–356 (1990).
[Crossref]
Other (3)
F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, New Jersey, 1993).
K. J. Voss and A. L. Chapin , “Next generation inwater radiance distribution camera system,” in Ocean Optics XI, G. D. Gilbert, eds., Proc. SPIE1750, 384–387 (1992).
J. P. Doyle and K. J. Voss, “3D Instrument SelfShading effects on inwater multidirectional radiance measurements,” presented at Ocean Optics XV, Monaco, 16–20 Oct. 2000.
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (8)
Picture of NuRADS system (fore ground) with the older RADSII system (background). The new system is significantly more compact than the older system.
Dark noise data for the instrument. Left Fig. shows that the average pixel count of the dark/readout noise is approximately 2675 counts, and only increases when the integration time is greater than 2 seconds. Right Fig. shows that the standard deviation in the individual pixel averages is on the order of 4 counts.
An example angular calibration. A small source is imaged by the camera, and a series of images is obtained as the camera is rotated. For each image, the source location in the image is determined and correlated with the rotation angle. The line is a linear least squares fit to the data.
Angular calibration history for one of the NuRADS camera systems. In this graph the open circles represent
Rolloff functions for NuRADS (blue crosses) and for RADSII (red crosses). As can be seen, the rolloff for the NuRADS system is much less severe than for the RADSII system. At 80°, the rolloff is only 0.9 versus 0.2 for the older system.
Calibration history of one of the NuRADS camera systems. As can be seen the absolute calibration is fairly stable over the instruments history.
Upwelling radiance distribution images in clear water. Solar zenith angle is 38 degrees in air. Nadir angles are linearly related to the radius from the center. The center of each image is the nadir, the edge of the circle is the horizon (90 deg nadir angle). At very large nadir angles, in the lower wavelengths, the ship shadow or hull is evident and is labeled in one of the graphs At the reddest wavelength the direct instrument selfshadow is quite evident and is labeled in the graph.
Upwelling radiance distribution images in turbid, coastal water. Solar zenith angle is 33 degrees in air. Figure geometry is the same as Fig. 8.
Tables (3)
Table 1. Spectral characteristics of the current NuRADS configuration.
Table 2. Q_{u}, µ_{u}, and L_{u} for the clear water radiance distributions. The last column [Qu(MAG)] is Qu predicted by Morel et al.[15].
Table 3. Q_{u}, µ_{u}, and L_{u} for the turbid water radiance distributions.
Equations (6)
Equations on this page are rendered with MathJax. Learn more.