Abstract

We design, fabricate and investigate compact Z-add-drop (ZAD) filters for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. The ZAD filter for LR-SPPs consists of two ridge gratings formed by periodic gold thickness modulation at the intersections of three zigzag-crossed gold stripes embedded in polymer. We investigate influence of the grating length and crossing angle on the filter characteristics and demonstrate a 10°-ZAD filter based on 80-µm-long gratings that exhibit a 15-dB dip (centered at ~1.55 µm) in transmission of the direct arm along with the corresponding ~13-nm-wide transmission peak in the drop arm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Raether, Surface Plasmons, (Springer, Berlin, 1988).
  2. S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78, 2823-2826 (1997).
    [CrossRef]
  3. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
    [CrossRef]
  4. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
    [CrossRef] [PubMed]
  5. S.I. Bozhevolnyi, V.S. Volkov, K. Leosson, 'Localization and waveguiding of surface plasmon polaritons in random nanostructures,' Phys. Rev. Lett. 89, 186801 (2002).
    [CrossRef] [PubMed]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  7. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411-9 (2001).
    [CrossRef]
  8. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  9. J. J. Burke, G. I. Stegeman, T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
    [CrossRef]
  10. P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503, (2000).
    [CrossRef]
  11. R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  12. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, "Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
    [CrossRef]
  13. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. of Lightwave Techn., 23, 413-422 (2005).
    [CrossRef]
  14. R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005).
    [CrossRef] [PubMed]
  15. T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455 (2005).
    [CrossRef]
  16. T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5836 (2004).
    [CrossRef]
  17. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Appl. Phys. Lett. (3)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S.I. Bozhevolnyi, "Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5836 (2004).
[CrossRef]

J. of Lightwave Techn. (1)

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. of Lightwave Techn., 23, 413-422 (2005).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (3)

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411-9 (2001).
[CrossRef]

J. J. Burke, G. I. Stegeman, T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503, (2000).
[CrossRef]

Phys. Rev. Lett. (4)

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

S.I. Bozhevolnyi, V.S. Volkov, K. Leosson, 'Localization and waveguiding of surface plasmon polaritons in random nanostructures,' Phys. Rev. Lett. 89, 186801 (2002).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78, 2823-2826 (1997).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons, (Springer, Berlin, 1988).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the end-fire coupling technique for exciting LR-SPPs using a standard single-mode optical fiber.

Fig. 2.
Fig. 2.

Schematic (side view) of the diffraction grating for LR-SPPs formed by periodic symmetric ridges protruding from a metal film embedded in dielectric.

Fig. 3.
Fig. 3.

Schematic (top view) of the ZAD filter configuration. Diffraction gratings are wider than stripes to secure efficient interaction with LR-SPPs.

Fig. 4.
Fig. 4.

Microscope image of the 500-nm-period grating with 20-nm-high gold ridges placed on the intersection of 8-µm-wide 15-nm-thick gold stripes crossing at the angle of 20°.

Fig.5.
Fig.5.

Transmission spectra for 20°-ZAD direct arms with 500-nm-period gratings of different lengths (indicated in grating periods). The gratings are characterized with the filling factor of 0.3 and the ridge height of 20 nm (on each side of the waveguide plane).

Fig. 6.
Fig. 6.

Transmission spectra for ZAD direct arms with 40-µm-long gratings oriented at different angles θ with respect to the input stripe. All else is as in Fig. 5.

Fig. 7.
Fig. 7.

Performance of the10°-ZAD filter configuration based on 80-µm-long gratings (filling factor ~0.4) showing both the direct and drop arm output spectra along with the total power (both direct and drop outputs) transmission spectrum. All else is as in Fig. 5.

Metrics