Abstract

We developed an electroholography unit, which consists of a special-purpose computational chip for holography and a reflective liquid-crystal display (LCD) panel, for a three-dimensional (3D) display. The special-purpose chip can compute a computer-generated hologram of 800×600 grids in size from a 3D object consisting of approximately 400 points in approximately 0.15 seconds. The pixel pitch and resolution of the LCD panel are 12µm and 800×600 grids, respectively. We implemented the special purpose chip and LCD panel on a printed circuit board of approximately 28cm×13cm in size. After the calculation, the computer-generated hologram produced by the special-purpose chip is displayed on the LCD panel. When we illuminate a reference light to the LCD panel, we can observe a 3D animation of approximately 3cm×3cm×3cm in size. In the present paper, we report the electroholographic display unit together with a simple 3D display system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S.A.Benton, �??Experiments in holographic video imaging,�?? Proc.SPIE Vol.IS# 08, 247-267 (1991).
  2. K.Maeno, N.Fukaya, O.Nishikawa, K.Sato and T.Honda, �??ELECTRO-HOLOGRAPHIC display using 15MEGA pixels LCD,�?? Proc.SPIE 2652, 15�??13 (1996).
    [CrossRef]
  3. M.Lucente, �??Interactive Computation of Holograms Using a Look-Up Table,�?? J. Electronic Imaging 2-1, pp. 28�??34 (1993).
    [CrossRef]
  4. H.Yoshikawa, S.Iwase and T.Oneda, �??Fast Computation of Fresnel Holograms employing Difference,�?? Proc. SPIE 3956, pp. 48�??55 (2000).
    [CrossRef]
  5. K.Matsushima and M.Takai, �??Recurrence formulas for fast creation of synthetic three-dimensional holograms,�?? Appl. Opt. 39, pp. 6587�??6594 (2000).
    [CrossRef]
  6. M.Lucente, �??Diffraction-Specific Fringe Computation for Electro-Holography,�?? Ph. D. Thesis Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1994).
  7. T.Ito, T.Yabe, M.Okazaki and M.Yanagi, �??Special-purpose computer HORN-1 for reconstruction of virtual image in three dimensions,�?? Comput. Phys. Commun. 82, 104�??110 (1994).
    [CrossRef]
  8. T.Ito, H.Eldeib, K.Yoshida, S.Takahashi, T.Yabe and T.Kunugi, �??Special-purpose computer for holography, HORN-2,�?? Comput. Phys. Commun. 93, 13�??20 (1996).
    [CrossRef]
  9. T.Shimobaba, S.Hishinuma and T.Ito, �??Special-Purpose Computer for Holography HORN-4 with recurrence algorithm,�?? Comput. Phys. Commun. 148/2, pp. 160�??170 (2002).
    [CrossRef]
  10. T.Ito, T.Shimobaba, H.Godo and M.Horiuchi, �??Holographic reconstruction with 10um pixel pitch reflective LCD by reference light of LED,�?? Opt. Lett. 27, 16, 1406�??1408 (2002).
    [CrossRef]
  11. J.Makino, M.Taiji, T.Ebisuzaki and D.Sugimoto, �??GRAPE-4: A Massively Parallel Special-Purpose Computer for Collisional N-Body Simulations,�?? ApJ 480, 432 (1997).
    [CrossRef]
  12. T.Ito and T.Shimobaba, �??One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,�?? Opt. Express 12, No. 9, 1788�??1793 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1788.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1788.</a>
    [CrossRef] [PubMed]

ApJ (1)

J.Makino, M.Taiji, T.Ebisuzaki and D.Sugimoto, �??GRAPE-4: A Massively Parallel Special-Purpose Computer for Collisional N-Body Simulations,�?? ApJ 480, 432 (1997).
[CrossRef]

Appl. Opt. (1)

Comput. Phys. Commun. (3)

T.Ito, T.Yabe, M.Okazaki and M.Yanagi, �??Special-purpose computer HORN-1 for reconstruction of virtual image in three dimensions,�?? Comput. Phys. Commun. 82, 104�??110 (1994).
[CrossRef]

T.Ito, H.Eldeib, K.Yoshida, S.Takahashi, T.Yabe and T.Kunugi, �??Special-purpose computer for holography, HORN-2,�?? Comput. Phys. Commun. 93, 13�??20 (1996).
[CrossRef]

T.Shimobaba, S.Hishinuma and T.Ito, �??Special-Purpose Computer for Holography HORN-4 with recurrence algorithm,�?? Comput. Phys. Commun. 148/2, pp. 160�??170 (2002).
[CrossRef]

J. Electronic Imaging (1)

M.Lucente, �??Interactive Computation of Holograms Using a Look-Up Table,�?? J. Electronic Imaging 2-1, pp. 28�??34 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

H.Yoshikawa, S.Iwase and T.Oneda, �??Fast Computation of Fresnel Holograms employing Difference,�?? Proc. SPIE 3956, pp. 48�??55 (2000).
[CrossRef]

Proc.SPIE (2)

S.A.Benton, �??Experiments in holographic video imaging,�?? Proc.SPIE Vol.IS# 08, 247-267 (1991).

K.Maeno, N.Fukaya, O.Nishikawa, K.Sato and T.Honda, �??ELECTRO-HOLOGRAPHIC display using 15MEGA pixels LCD,�?? Proc.SPIE 2652, 15�??13 (1996).
[CrossRef]

Other (1)

M.Lucente, �??Diffraction-Specific Fringe Computation for Electro-Holography,�?? Ph. D. Thesis Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1994).

Supplementary Material (2)

» Media 1: MPEG (1185 KB)     
» Media 2: MPEG (1789 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Photograph of the electroholographic display unit. (b) Outline of the electroholographic display unit.

Fig. 2.
Fig. 2.

Outline of the pipeline in SPC.

Fig. 3.
Fig. 3.

(a) Intensity unit. (b) Intensity unit with VMP.

Fig. 4.
Fig. 4.

Outline of the optical system.

Fig. 5.
Fig. 5.

Example of reconstructed 3D animation (circle and cone) (1.74MB). The original 3D object consists of 407 points

Fig. 6.
Fig. 6.

Example of reconstructed 3D animation (torus) (1.15MB). The original 3D object consists of 512 points

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x α , y α ) = j N A j cos ( 2 π λ ( z j + p 2 ( x α x j ) 2 + ( y α y j ) 2 2 z j ) ) .
θ XY = P j ( ( x α x j ) 2 + ( y α y j ) 2 ) , Γ 1 = P j ( 2 ( x α x j ) + 1 ) , Δ = P j × 2 ,
Γ n = Γ n 1 + δ n 1 , δ n = δ n 1 + Δ ,
I ( x α + n , y α ) = j N A j cos ( 2 π ( Γ n + δ n ) ) ,

Metrics