Abstract

We experimentally demonstrate a novel grating which only produces reflection with mode conversion in a two-mode waveguide. That characteristic can improve the performance of optical devices that currently use tilted Bragg gratings to provide the mode conversion. Tilted Bragg gratings produce also reflections without mode conversion which increases noise and crosstalk of the optical device.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. S. Kewitsch, G. A. Rakuljic, P. A Willems, and A. Yariv, �??All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing,�?? Opt. Lett. 23, 106 (1998).
    [CrossRef]
  2. C. K. Madsen, T. A. Strasser, M. A. Milbrodt, C. H. Henry, A. J. Bruce, and J. Demarco, �??Planar waveguide add/drop filter employing a mode converting grating in an adiabatic coupler,�?? in Integrated Photonics Research, Vol. 4 of Tech. Dig. Series (Optical Society of America, Washington, D.C.,1998), pp. 102-104.
  3. D.F Geraghty, D. Provenzano, M. M. Morrell, S. Honkanen, A. Yariv, N. Peyghambariam, �??Ion-exchanged Waveguide Add/Drop Filter,�?? Electron Lett. 37, 829-831, (2001)
    [CrossRef]
  4. D F. Geraghty, J. M Castro, B West, Seppo Honkanen,�??All-Optical Packet Header Recognition Integrated Optic Chip,�?? in Proceedings of IEEE LEOS (Institute of Electrical and Electronics Engineers, Arizona, 2003), pp 752-753.
  5. C. Riziotis and M. N. Zervas, �??Design considerations in optical add/drop multiplexers based on grating-assisted null couplers,�?? IEEE J. Lightwave Technol. 19, 92-104 (2001).
    [CrossRef]
  6. J. M. Castro , D. F. Geraghty, B West, Seppo Honkanen, �??Fabrication and Comprehensive Modeling of Ion- Exchanged Bragg Optical Add/Drop Multiplexers,�?? Appl. Opt. 43, 6166-6173 (2004).
    [CrossRef] [PubMed]
  7. M. Aslund, J. Canning, L. Poladian, C. Martijn de Sterke, and A. Judge, "Antisymmetric grating coupler: Experimental results," Appl. Opt. 42, pp.6578-6583 (2003)
    [CrossRef] [PubMed]
  8. S. Tomljenovic-Hanic, and J. D. Love, �??Planar waveguide add/drop wavelength filters based on segmented gratings,�?? Microw. Opt. Techn. Lett. 37, 163-165 (2003)
    [CrossRef]
  9. S.Tomljenovic-Hanic, �??Symmetry-selecting gratings and their applications�??, in Proceedings of 5 th International Conference on Transparent Optical networks, M. Marciniak, ed. (IEEE , Warsaw, Poland, 2003) pp. 196-199.
    [CrossRef]
  10. J. M. Castro, A. Sato, D. F. Geraghty, �??Waveguide mode conversion using anti-symmetric gratings,�?? OFC Conference, California, March 6-11, 2005.
  11. T. Erdogan and J.E Sipe, �??Tilted fiber phase gratings,�?? J. Opt. Soc. Am. A 13, pp. 296-313, February (1996).
    [CrossRef]
  12. R. Kashyap, Fiber Bragg Gratings, (Academic Press, San Diego, CA, 1999).
  13. C. Greiner, T. W. Mossberg and D. Iazikov, �??Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings,�?? Opt. Lett. 29, 806 (2004)
    [CrossRef] [PubMed]
  14. LigthSmyth Technologies,�??Channel Waveguide Gratings,�?? <a href= "http://www.lightsmyth.com">http://www.lightsmyth.com</a>
  15. William K. Burns and Fenner Milton, �??An Analytic Solution for Mode Coupling in Optical Waveguide branches,�?? IEEE J. Quantum Electron. 16, 446 (1980)
    [CrossRef]
  16. R. Adar, C. H. Henry, R. H. Kistler, and R. F. Kazarinov, �??Polarization independent narrow band Bragg reflection gratings made with silica-on-silicon waveguides,�?? Appl. Phys. Lett. 60, 1779 (1992).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. Adar, C. H. Henry, R. H. Kistler, and R. F. Kazarinov, �??Polarization independent narrow band Bragg reflection gratings made with silica-on-silicon waveguides,�?? Appl. Phys. Lett. 60, 1779 (1992).
[CrossRef]

Electron Lett. (1)

D.F Geraghty, D. Provenzano, M. M. Morrell, S. Honkanen, A. Yariv, N. Peyghambariam, �??Ion-exchanged Waveguide Add/Drop Filter,�?? Electron Lett. 37, 829-831, (2001)
[CrossRef]

IEEE (1)

S.Tomljenovic-Hanic, �??Symmetry-selecting gratings and their applications�??, in Proceedings of 5 th International Conference on Transparent Optical networks, M. Marciniak, ed. (IEEE , Warsaw, Poland, 2003) pp. 196-199.
[CrossRef]

IEEE J. Lightwave Technol. (1)

C. Riziotis and M. N. Zervas, �??Design considerations in optical add/drop multiplexers based on grating-assisted null couplers,�?? IEEE J. Lightwave Technol. 19, 92-104 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

William K. Burns and Fenner Milton, �??An Analytic Solution for Mode Coupling in Optical Waveguide branches,�?? IEEE J. Quantum Electron. 16, 446 (1980)
[CrossRef]

IEEE LEOS (1)

D F. Geraghty, J. M Castro, B West, Seppo Honkanen,�??All-Optical Packet Header Recognition Integrated Optic Chip,�?? in Proceedings of IEEE LEOS (Institute of Electrical and Electronics Engineers, Arizona, 2003), pp 752-753.

J. Opt. Soc. Am. A (1)

Microw. Opt. Techn. Lett. (1)

S. Tomljenovic-Hanic, and J. D. Love, �??Planar waveguide add/drop wavelength filters based on segmented gratings,�?? Microw. Opt. Techn. Lett. 37, 163-165 (2003)
[CrossRef]

OFC March 6-11, 2005. (1)

J. M. Castro, A. Sato, D. F. Geraghty, �??Waveguide mode conversion using anti-symmetric gratings,�?? OFC Conference, California, March 6-11, 2005.

Opt. Lett. (2)

Tech. Dig. Series (1)

C. K. Madsen, T. A. Strasser, M. A. Milbrodt, C. H. Henry, A. J. Bruce, and J. Demarco, �??Planar waveguide add/drop filter employing a mode converting grating in an adiabatic coupler,�?? in Integrated Photonics Research, Vol. 4 of Tech. Dig. Series (Optical Society of America, Washington, D.C.,1998), pp. 102-104.

Other (2)

R. Kashyap, Fiber Bragg Gratings, (Academic Press, San Diego, CA, 1999).

LigthSmyth Technologies,�??Channel Waveguide Gratings,�?? <a href= "http://www.lightsmyth.com">http://www.lightsmyth.com</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of the anti-symmetric waveguide grating (a) and a waveguide with a tilted Bragg grating (b).

Fig. 2.
Fig. 2.

Comparison of a TBG (dashed line) to the anti-symmetric Bragg Grating (solid line).

Fig. 3.
Fig. 3.

Schematics of the fabricated device using the anti-symmetric grating. Measured mode profiles of the two-mode waveguide are also shown.

Fig. 4.
Fig. 4.

Set up for sample characterization.

Fig. 5.
Fig. 5.

Calculated and measured TE reflection spectrum of the anti-symmetric waveguide Bragg grating.

Fig. 6.
Fig. 6.

Calculated and measured TM reflection spectrum of the anti-symmetric waveguide Bragg grating.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η ab = e a * ( x , y ) ζ ( x , y ) e b ( x , y ) dxdy e a * ( x , y ) e a ( x , y ) dxdy e b * ( x , y ) e b ( x , y ) dxdy
λ oe = Λ ( n e + n o )

Metrics