Abstract

We have developed a bimorph piezoceramic deformable mirror with 28 independently controlled vertical sectors. When used in a reflective 2 f setup the mirror enables phase compensation in the range of a few hundred radians. We have demonstrated that such a compressor is able to compress femtosecond laser pulses that had been initially stretched by a factor of 60 close to their initial shape.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. S. Warren, R. Rabitz, M. Dahleh, �??Coherent control of chemical reactions: the dream is alive,�?? Science 259, 1581 (1993)
    [CrossRef] [PubMed]
  2. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929 (2000)
    [CrossRef]
  3. G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, F. Reichel, �??A new high-resolution femtosecond pulse shaper,�?? Appl. Phys. B 72, 627 (2001)
    [CrossRef]
  4. M. A. Dugan, J.X. Tull, W. W. Warren, �??High Resolution Acousto-Optic Shaping of Unamplified and Amplified Femtosecond Laser Pulses,�?? J. Opt. Soc. Am. B 14, 2348 (1997)
    [CrossRef]
  5. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, �??Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,�?? Opt. Lett. 25, 575 (2000)
    [CrossRef]
  6. C. Dorrer, F. Salin, F. Verluise, J. P. Huignard, �??Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator,�?? Opt. Lett. 23, 709 (1998)
    [CrossRef]
  7. G. Chériaux, O. Albert, V. Wänman, J. P. Chambaret, C. Félix, G. Mourou, �??Temporal control of amplified femtosecond pulses with a deformable mirror in a stretcher,�?? Opt. Lett. 26, 169 (2001)
    [CrossRef]
  8. G. Vdovin, M, Loktev, �??Deformable mirror with thermal actuators,�?? Opt. Lett. 27, 677 (2002)
    [CrossRef]
  9. C. Radzewicz, P. Wasylczyk, W. Wasilewski, J. S. Karasi�?ski, �??Piezo-driven deformable mirror for femtosecond pulse shaping,�?? Opt. Lett. 29, 177 (2004)
    [CrossRef] [PubMed]
  10. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, G. Vdovin, �??Pulse compression by use of deformable mirrors,�?? Opt. Lett. 24, 493 (1999)
    [CrossRef]
  11. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, �??Micromirror SLM for femtosecond pulse shaping in the ultraviolet,�?? Appl. Phys. B 76, 711 (2003)
    [CrossRef]
  12. E. Steinhaus, S. G. Lipson, �??Bimorph piezoelectric flexible mirror,�?? J. Opt. Soc. Am. 69, 478 (1979)
    [CrossRef]
  13. H. Baumhacker, G. Pretzler, K. J. Witte, M. Hegelich, M. Kaluza, S. Karsch, A. Kudryashov, V. Samarkin, A. Roukossouev, �??Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Tisapphire laser,�?? Opt. Lett. 27, 1570 (2002)
    [CrossRef]
  14. S. A. Kokorowski, �??Analysis of adaptive optical elements made from piezoelectric bimorphs,�?? J. Opt. Soc. Am. 69, 181 (1979)
    [CrossRef]
  15. Piezo Systems, Inc., 186 Massachusetts Avenue, Cambridge, MA 02139, USA, <a href="http://www.piezo.com">http://www.piezo.com</a>
  16. C. Iaconis, I. A. Walmsley, �??Self-referencing spectral interferometry for measuring ultrashort optical pulses,�?? IEEE J. Quantum Electron. 35, 501 (1999)
    [CrossRef]
  17. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, �??Femtosecond Pulse Shaping by an Evolutionary Algorithm with Feedback,�?? Appl. Phys. B 65, 779 (1997)
    [CrossRef]

Appl. Phys. B (3)

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, F. Reichel, �??A new high-resolution femtosecond pulse shaper,�?? Appl. Phys. B 72, 627 (2001)
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, �??Micromirror SLM for femtosecond pulse shaping in the ultraviolet,�?? Appl. Phys. B 76, 711 (2003)
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, �??Femtosecond Pulse Shaping by an Evolutionary Algorithm with Feedback,�?? Appl. Phys. B 65, 779 (1997)
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Iaconis, I. A. Walmsley, �??Self-referencing spectral interferometry for measuring ultrashort optical pulses,�?? IEEE J. Quantum Electron. 35, 501 (1999)
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (7)

Rev. Sci. Instrum. (1)

A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929 (2000)
[CrossRef]

Science (1)

W. S. Warren, R. Rabitz, M. Dahleh, �??Coherent control of chemical reactions: the dream is alive,�?? Science 259, 1581 (1993)
[CrossRef] [PubMed]

Other (1)

Piezo Systems, Inc., 186 Massachusetts Avenue, Cambridge, MA 02139, USA, <a href="http://www.piezo.com">http://www.piezo.com</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic drawing of the deformable mirror construction; (b) principle of operation of the deformable mirror

Fig. 2.
Fig. 2.

Experimental setup; OSC – femtosecond oscillator, BS – beam splitter, M1 – flat mirror, GR – diffraction grating 600 1/mm, M2 – concave mirror f=1 m, DM – deformable mirror, AMP – voltage amplifier, PC – personal computer, SP – spectrometer

Fig. 3.
Fig. 3.

Examples of phase patterns produced by the 2 f pulse shaper with the deformable mirror: (a) quadratic, (b) cubic, (c) a step - like obtained by applying the highest positive voltage to one of central sectors and the highest negative voltage to the adjacent sector, (d) a sin - like phase corresponding to equal voltages of opposite signs applied to consecutive sectors. In all cases an additional small bias voltage was applied to all electrodes to compensate imperfect initial mirror shape.

Fig. 4.
Fig. 4.

(a) Spectral phase introduced by SF11 glass (black), the phase after compression (blue) and the phase after compression enlarged 10 (red). (b) Autocorrelation traces: blue - laser pulse, red - pulse after propagation through 10 cm of SF11 glass and compression.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R 1 = V d 31 t 2
2 y x 2 = d 31 t 2 V ( x )
y ( x ) = d 31 t 2 k = 2 N + 2 a k 2 1 k ( k 1 ) x k .
E out ( ω ) = E in ( ω ) e i ϕ ( ω )
I ( ω ) = I 0 ( ω ) ( 1 + cos ( ω 0 τ + ϕ ( ω ) ) )

Metrics