Abstract

A Fresnel lens with electrically-tunable diffraction efficiency while possessing high image quality is demonstrated using a phase-separated composite film (PSCOF). The light scattering-free PSCOF is obtained by anisotropic phase separation between liquid crystal and polymer. Such a lens can be operated below 12 volts and its switching time is reasonably fast (~10 ms). The maximum diffraction efficiency reaches ~35% for a linearly polarized light, which is close to the theoretical limit of 41%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, �??Two methods for increasing the depth of focus of imaging systems,�?? Proc. SPIE 5227, 8-15 (2004).
  2. M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, �??Diffractive elements with extended depth of focus,�?? Proc. SPIE 5484, 475-481 (2004).
    [CrossRef]
  3. S. C. Kim, S. E. Lee, and E. S. Kim, �??Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,�?? Proc. SPIE 5443, 250-256 (2004).
    [CrossRef]
  4. X. Ren, S. Liu, and X. Zhang, �??Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,�?? Proc. SPIE 5456, 391-398 (2004).
    [CrossRef]
  5. J. T. Early and R. Hyde, �??Twenty-meter space telescope based on diffractive Fresnel lens,�?? Proc. SPIE 5166, 148-156 (2004).
    [CrossRef]
  6. C.-H. Tsai, P. Lai; K. Lee; C. K. Lee, �??Fabrication of a large F-number lenticular plate and its use as a small-angle flat-top diffuser in autostereoscopic display screens,�?? Proc. SPIE 3957, 322-329 (2000).
    [CrossRef]
  7. N. Kitaura, S. Ogata, and Y. Mori, �??Spectrometer employing a micro-Fresnel lens,�?? Opt. Eng. 34, 584-588 (1995).
    [CrossRef]
  8. J. Jahns and S. J. Walker, �??Two-dimensional array of diffractive microlenses fabricated by thin film deposition,�?? Appl. Opt. 29, 931-936 (1990).
    [CrossRef] [PubMed]
  9. K. Rastani, A. Marrakchi, S. F. Habiby, W. M. Hubbard, H. Gilchrist, and R. E. Nahory, Appl. Opt. 30, 1347-1354 (1991).
    [CrossRef] [PubMed]
  10. L. Mingtao, J. Wang, L. Zhuang, and S. Y. Chou, �??Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,�?? Appl. Phys. Lett. 76, 673-675 (2000).
    [CrossRef]
  11. J. Canning, K. Sommer, S. Huntington, and A. Carter, �??Silica-based fiber Fresnel lens,�?? Opt. Comm. 199, 375-381 (2001).
    [CrossRef]
  12. G. Williams, N. J. Powell, A. Purvis and M. G. Clark, �??Electrically controllable liquid crystal Fresnel lens,�?? Proc. SPIE 1168, 352-357 (1989).
  13. J. S. Patel and K. Rastani, �??Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,�?? Opt. Lett. 16, 532-534 (1991).
    [CrossRef] [PubMed]
  14. M. Ferstl and A. Frisch, �??Static and dynamic Fresnel zone lenses for optical interconnections,�?? J. Mod. Opt. 43, 1451-1462 (1996).
    [CrossRef]
  15. H. Ren, Y. H. Fan, and S. T. Wu, �??Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,�?? Appl. Phys. Lett. 83, 1515-1517 (2003).
    [CrossRef]
  16. Y. H. Fan, H. Ren and S. T. Wu, �??Switchable Fresnel lens using polymer-stabilized liquid crystals,�?? Opt. Express 11, 3080-3086 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3080">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3080</a>
    [CrossRef] [PubMed]
  17. R. S. Cudney, L. A. Ríos, H. M. Escamilla, �??Electrically controlled Fresnel zone plates made from ring-shaped 180° domains,�?? Opt. Express 12, 5783-5788 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5783.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5783</a>
    [CrossRef] [PubMed]
  18. V. Vorflusev and S. Kumar, �??Phase-Separated Composite Films for Liquid Crystal Displays,�?? Science 283, 1903-1905 (1999).
    [CrossRef] [PubMed]
  19. Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, �??Fast-response and scattering-free polymer network liquid crystals,�?? Appl. Phys. Lett. 84, 1233-1235 (2004).
    [CrossRef]
  20. W. T. He, T. Nose, and S. Sato, �??Novel liquid crystal grating with a relief structure by a simple UV irradiation Process,�?? Jpn. J. Appl. Phys. 37, 4066-4069 (1998).
    [CrossRef]
  21. R. Menon, E. E. Moon, M. K. Mondol, F. J. Castaño, and H. I. Smith, �??Scanning-spatial-phase alignment for zone-plate-array lithography,�?? J. Vac. Sci. Technol. B 22, 3382-3385 (2004).

Appl. Opt.

Appl. Phys. Lett.

L. Mingtao, J. Wang, L. Zhuang, and S. Y. Chou, �??Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,�?? Appl. Phys. Lett. 76, 673-675 (2000).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, �??Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,�?? Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, �??Fast-response and scattering-free polymer network liquid crystals,�?? Appl. Phys. Lett. 84, 1233-1235 (2004).
[CrossRef]

J. Mod. Opt.

M. Ferstl and A. Frisch, �??Static and dynamic Fresnel zone lenses for optical interconnections,�?? J. Mod. Opt. 43, 1451-1462 (1996).
[CrossRef]

J. Vac. Sci. Technol. B

R. Menon, E. E. Moon, M. K. Mondol, F. J. Castaño, and H. I. Smith, �??Scanning-spatial-phase alignment for zone-plate-array lithography,�?? J. Vac. Sci. Technol. B 22, 3382-3385 (2004).

Jpn. J. Appl. Phys.

W. T. He, T. Nose, and S. Sato, �??Novel liquid crystal grating with a relief structure by a simple UV irradiation Process,�?? Jpn. J. Appl. Phys. 37, 4066-4069 (1998).
[CrossRef]

Opt. Comm.

J. Canning, K. Sommer, S. Huntington, and A. Carter, �??Silica-based fiber Fresnel lens,�?? Opt. Comm. 199, 375-381 (2001).
[CrossRef]

Opt. Eng.

N. Kitaura, S. Ogata, and Y. Mori, �??Spectrometer employing a micro-Fresnel lens,�?? Opt. Eng. 34, 584-588 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

G. Williams, N. J. Powell, A. Purvis and M. G. Clark, �??Electrically controllable liquid crystal Fresnel lens,�?? Proc. SPIE 1168, 352-357 (1989).

E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, �??Two methods for increasing the depth of focus of imaging systems,�?? Proc. SPIE 5227, 8-15 (2004).

M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, �??Diffractive elements with extended depth of focus,�?? Proc. SPIE 5484, 475-481 (2004).
[CrossRef]

S. C. Kim, S. E. Lee, and E. S. Kim, �??Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,�?? Proc. SPIE 5443, 250-256 (2004).
[CrossRef]

X. Ren, S. Liu, and X. Zhang, �??Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,�?? Proc. SPIE 5456, 391-398 (2004).
[CrossRef]

J. T. Early and R. Hyde, �??Twenty-meter space telescope based on diffractive Fresnel lens,�?? Proc. SPIE 5166, 148-156 (2004).
[CrossRef]

C.-H. Tsai, P. Lai; K. Lee; C. K. Lee, �??Fabrication of a large F-number lenticular plate and its use as a small-angle flat-top diffuser in autostereoscopic display screens,�?? Proc. SPIE 3957, 322-329 (2000).
[CrossRef]

Science

V. Vorflusev and S. Kumar, �??Phase-Separated Composite Films for Liquid Crystal Displays,�?? Science 283, 1903-1905 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic representation of the fabrication process of the PSCOF Fresnel lens.

Fig. 2.
Fig. 2.

Cross-sectional view of the PSCOF Fresnel lens.

Fig. 3.
Fig. 3.

Microscope images of the PSCOF Fresnel lens cell at V=0. The sample is sandwiched between crossed polarizers.

Fig. 4.
Fig. 4.

Microscope images of the PSCOF Fresnel lens at (a) V=0, (b) 4 Vrms, (c) 6 Vrms, and (d) 16 Vrms. The LC cell is sandwiched between two crossed polarizers.

Fig. 5.
Fig. 5.

The experimental setup for studying the focusing properties of the PSCOF Fresnel lens. Focal length L1=50 mm, and L2=250 mm, and pinhole diameter P=30 µm.

Fig. 6.
Fig. 6.

The voltage-dependent diffraction efficiency of the PSCOF Fresnel lens. The diameter of the Fresnel zone plate is 1 cm and the focal length is 50 cm.

Fig. 7.
Fig. 7.

Beam intensity profile measured by the CCD camera at (a) V=5 Vrms, and (b) 12 Vrms. The diameter of the Fresnel zone plate is 1 cm and the focal length is 50 cm.

Fig. 8.
Fig. 8.

Image properties of the PSCOF Fresnel lens recorded by a CCD camera at (a) 5 Vrms and (b) 12 Vrms.

Metrics