Abstract

We show numerically that the size of the nanoparticles (NPs) that scatter surface plasmon-polaritons (SPPs) is directly related to the angular position of the maximum in a scattered light distribution. Thus, the existence of one or two experimentally observed maxima in the angular distribution of the scattered light for different NP materials can be explained by a bimodal NP size distribution. We also invoke the polarization properties of the scattered light to estimate the contribution of multiple scattering processes to the observed light distribution. SPP excitation can be detected by a minimum in the reflectivity, or a maximum in the scattered light distribution. We show that this maximum exists for a wider range of NP sizes (or surface roughness) than the minimum in the reflectivity. This observation is interesting for the development of SPP based optical sensors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. U. Kreibig, M. Volmer, Optical Properties of Metal Clusters, (Springer-Verlag, Berlin 1995).
  2. V.A. Sterligov, P. Cheyssac, R. Kofman, S.I. Lysenko, P.M. Lytvyn, B. Vohnsen, S.I. Bozhevolnyi, and A.A. Maradudin, �??Near/far-field investigations of the interaction between surface waves and nanoparticles,�?? Phys. Stat. Sol.(b) 229, 1283 (2002).
    [CrossRef]
  3. P. Cheyssac, V.A. Sterligov, S.I. Lysenko, R. Kofman, �??Scattering of surface plasmon-polaritons and light by metallic nanoparticles,�?? Opt. Commun. 175, 383 (2000).
    [CrossRef]
  4. T. Kume, S. Hayashi, and K. Yamamoto, �??Light emission from surface plasmon polaritons mediated by metallic fine particles,�?? Phys. Rev. B 55, 4774 (1997).
    [CrossRef]
  5. A.V. Shchegrov, I.V. Novikov, and A.A. Maradudin, �??Scattering of Surface Plasmon Polaritons by a Circularly Symmetric Surface Defect,�?? Phys. Rev. Lett. 78, 4269 (1997).
    [CrossRef]
  6. J.C. Stover, �??Optical Scattering: Measurement and Analysis,�?? (SPIE Optical Engineering Press, Bellingham, Washington 1995).
  7. V.A. Sterligov, P. Cheyssac, �??Appareil et procédé de caractérisation optique d'un objet,�?? French Patent FR2832795, G01B-011/30 (2001).
  8. C. Métayer, V.A. Sterligov, A. Meunier, G. Bossis, J. Persello, S.V. Svechnikov, �??Field induced structures and phase separation in electrorheological and magnetorheological colloidal suspensions,�?? J. Phys.: Cond. Matt. 16, S3975 (2004).
    [CrossRef]
  9. D.S. Wiersma, M.P. van Albada, and A. Lagendijk, �??Coherent Backscattering of Light from Amplifying Random Media,�?? Phys. Rev. Lett. 75, 1739 (1995).
    [CrossRef] [PubMed]
  10. A. Taubert, U.-M. Wiesler, and K. Müllen, �??Dendrimer-controlled one-pot synthesis of gold nanoparticles with a bimodal size distribution and their self-assembly in the solid state,�?? J. Mater. Chem. 13(5), 1090 (2003).
    [CrossRef]

J. Mater. Chem

A. Taubert, U.-M. Wiesler, and K. Müllen, �??Dendrimer-controlled one-pot synthesis of gold nanoparticles with a bimodal size distribution and their self-assembly in the solid state,�?? J. Mater. Chem. 13(5), 1090 (2003).
[CrossRef]

J. Phys.: Cond. Matt.

C. Métayer, V.A. Sterligov, A. Meunier, G. Bossis, J. Persello, S.V. Svechnikov, �??Field induced structures and phase separation in electrorheological and magnetorheological colloidal suspensions,�?? J. Phys.: Cond. Matt. 16, S3975 (2004).
[CrossRef]

Opt. Commun.

P. Cheyssac, V.A. Sterligov, S.I. Lysenko, R. Kofman, �??Scattering of surface plasmon-polaritons and light by metallic nanoparticles,�?? Opt. Commun. 175, 383 (2000).
[CrossRef]

Phys. Rev. B

T. Kume, S. Hayashi, and K. Yamamoto, �??Light emission from surface plasmon polaritons mediated by metallic fine particles,�?? Phys. Rev. B 55, 4774 (1997).
[CrossRef]

Phys. Rev. Lett.

A.V. Shchegrov, I.V. Novikov, and A.A. Maradudin, �??Scattering of Surface Plasmon Polaritons by a Circularly Symmetric Surface Defect,�?? Phys. Rev. Lett. 78, 4269 (1997).
[CrossRef]

D.S. Wiersma, M.P. van Albada, and A. Lagendijk, �??Coherent Backscattering of Light from Amplifying Random Media,�?? Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

Phys. Stat. Sol

V.A. Sterligov, P. Cheyssac, R. Kofman, S.I. Lysenko, P.M. Lytvyn, B. Vohnsen, S.I. Bozhevolnyi, and A.A. Maradudin, �??Near/far-field investigations of the interaction between surface waves and nanoparticles,�?? Phys. Stat. Sol.(b) 229, 1283 (2002).
[CrossRef]

Other

U. Kreibig, M. Volmer, Optical Properties of Metal Clusters, (Springer-Verlag, Berlin 1995).

J.C. Stover, �??Optical Scattering: Measurement and Analysis,�?? (SPIE Optical Engineering Press, Bellingham, Washington 1995).

V.A. Sterligov, P. Cheyssac, �??Appareil et procédé de caractérisation optique d'un objet,�?? French Patent FR2832795, G01B-011/30 (2001).

Supplementary Material (1)

» Media 1: AVI (1481 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The contour plots of the differential cross section (in µm) for the light scattered into the vacuum region from a Gaussian surface defect described by (a): A=5 nm and R=25 nm, and (b): A=50 nm and R=250 nm. The direction of SPPs propagation is from left to right; (c): θ max, as a function of the surface defect size s.

Fig. 2.
Fig. 2.

Angular dependence of Rp and TIS for a zone without NPs and zones with different NP sizes.

Fig. 3.
Fig. 3.

The polarization properties of ARS(θ, φ) for ø8 nm Sn NP: (a) - PN, (b) - PP, (c) - PS, (d) - SP. The direction of SPP propagation is from left to right. The angle of incidence i=46.17°. Anisotropy of ARS(θ, φ, XY) relative to the horizontal axis is probably related to some error in the prism shape.

Fig. 4.
Fig. 4.

Video-recording (1.5 Mb) of the dependence of I(θ, φ, i) with PP polarization on the angle of incidence (i=43°-53°) for Ø16 nm Sn NPs. The direction of SPP propagation is from right to left.

Metrics