Abstract

Room-temperature operation of continuous-wave and Q-switched Tm,Ho:YLF lasers are reported. A 3W CW laser-diode in an end-pumped geometry is used to generate 393mW of 2µm laser output, representing a 14% optical to optical efficiency. In order to achieve single frequency operation, two intra-cavity solid etalons are used. Single frequency output power of 113mW is obtained, and the threshold power is only 250mW. The single frequency laser can be used as a seed laser for either a larger oscillator or an amplifier. In the acousto-optic Q-switched operation, laser pulses with the energy of 45µJ and 142ns FWHM width have been achieved for the pump power of 1.7W. We give the analytical formulas of the threshold pump power and slope efficiency to theoretically analyze the results obtained in the experiments, in which the energy transfer up-conversion and ground state re-absorption are taken into account.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. P. Barnes, W. J. Rodriguez and B. M. Walsh, �??Ho:Tm:YLF laser amplifiers,�?? J. Opt. Soc. Am. B. 13, 2872-2882 (1996)
    [CrossRef]
  2. B. M. Walsh, N. P. Barnes and B. D. Bartolo, �??On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,�?? J. Luminescence. 75, 89-98 (1997)
    [CrossRef]
  3. B. M. Walsh, N. P. Barnes and B. D. Bartolo, �??The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence in YAG and YLF,�?? Journal of luminescence. 90, 39-48 (2000)
    [CrossRef]
  4. G. L. Bourdet and G. Lescroart, �??Theoretical modeling and design of a Tm,Ho:YliF4 microchip laser,�?? Appl. Opt. 38, 3275-3281 (1999)
    [CrossRef]
  5. R. Gunnar and S. Knut, �??Modeling of laser-pumped Tm and Ho lasers accounting for up-conversion and ground-state depletion,�?? IEEE J. Quantum Electronics. 32, 1645-1655 (1996)
    [CrossRef]
  6. B. Barronti, F. Cornacchia, A. Di Lieto, P. Maroni, A. Toncelli and M. Tonelli, �??Room temperature 2µm Tm,Ho:YLF laser,�?? Optics and lasers in Engineering. 39, 277-282 (2003)
    [CrossRef]
  7. C. Nagasawa, D. Sakaizawa, H. Hara and K. Mizutani, �??Lasing characteristics of a CW Tm,Ho:YLF double cavity microchip laser,�?? Opt. Commun. 234, 301-304 (2004)
    [CrossRef]
  8. Jun Izawa, Hayato Nakajima and Hiroshi Hara, �??Comparison of lasing performance of Tm,Ho:YLF laser by use of single and double cavities,�?? Appl. Opt. 39, 1418-1421 ( 2000)
    [CrossRef]
  9. B.T. Mcguckin, R.T. Menzies and H. Hemmati, �??Efficient energy extraction from a diode-pumped Qswitched Tm,Ho:YLiF4 laser,�?? Appl. phys. Lett. 59, 2926-2928 (1991)
    [CrossRef]
  10. I. F. Elder and M. J. P. Payne, �??Single frequency diode-pumped Tm,Ho:YLF laser,�?? Electronics Letters. 34, 284-285 (1998)
    [CrossRef]
  11. G. Galzerano, E. Sani, A. Toncelli, G. Della Valle, S. Taccheo, M Tonelli, and P. Laporta, �??Widely tunable continuous-wave diode-pumped 2-μm Tm-Ho:KYF4 laser,�?? Opt. Lett. 29, 715-717 (2004)
    [CrossRef] [PubMed]
  12. V. Sudesh, K. Asai, �??Spectroscopic and diode-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: A comparative study,�?? J. Opt. Soc. Am. B. 20, 1829-1837 (2003)
    [CrossRef]
  13. Y. Wang, X. Zhang and B. Yao, �??Performance of a liquid-nitrogen-cooled CW Tm,Ho:YLF laser,�?? Chin. Opt. Lett. 1, 281-282 (2003)
  14. X. Zhang, Y. Wang, B. Yao and L. Dong, �??Performance of end-pumped Tm,Ho:YLF microchip laser,�?? Chin. J. Lasers. 31, 9-12 (2004)
  15. X. Zhang, Y. Wang and B. Yao, �??Study of LD end-pumped Tm,Ho:YLF laser,�?? Acta Optica Sinnic. 24, 88-93 (2004)
  16. X. Zhang, Y. Wang, and Y. Ju, �??Influence of energy-transfer up-conversion on Tm,Ho:YLF laser threshold,�?? Acta Phys. Sin. 54, 117-122 (2005)

Acta Optica Sinnic. (1)

X. Zhang, Y. Wang and B. Yao, �??Study of LD end-pumped Tm,Ho:YLF laser,�?? Acta Optica Sinnic. 24, 88-93 (2004)

Acta Phys. Sin. (1)

X. Zhang, Y. Wang, and Y. Ju, �??Influence of energy-transfer up-conversion on Tm,Ho:YLF laser threshold,�?? Acta Phys. Sin. 54, 117-122 (2005)

Appl. Opt. (2)

G. L. Bourdet and G. Lescroart, �??Theoretical modeling and design of a Tm,Ho:YliF4 microchip laser,�?? Appl. Opt. 38, 3275-3281 (1999)
[CrossRef]

Jun Izawa, Hayato Nakajima and Hiroshi Hara, �??Comparison of lasing performance of Tm,Ho:YLF laser by use of single and double cavities,�?? Appl. Opt. 39, 1418-1421 ( 2000)
[CrossRef]

Appl. phys. Lett. (1)

B.T. Mcguckin, R.T. Menzies and H. Hemmati, �??Efficient energy extraction from a diode-pumped Qswitched Tm,Ho:YLiF4 laser,�?? Appl. phys. Lett. 59, 2926-2928 (1991)
[CrossRef]

Chin. J. Lasers. (1)

X. Zhang, Y. Wang, B. Yao and L. Dong, �??Performance of end-pumped Tm,Ho:YLF microchip laser,�?? Chin. J. Lasers. 31, 9-12 (2004)

Chin. Opt. Lett. (1)

Electronics Letters. (1)

I. F. Elder and M. J. P. Payne, �??Single frequency diode-pumped Tm,Ho:YLF laser,�?? Electronics Letters. 34, 284-285 (1998)
[CrossRef]

IEEE J. Quantum Electronics. (1)

R. Gunnar and S. Knut, �??Modeling of laser-pumped Tm and Ho lasers accounting for up-conversion and ground-state depletion,�?? IEEE J. Quantum Electronics. 32, 1645-1655 (1996)
[CrossRef]

J. Luminescence. (1)

B. M. Walsh, N. P. Barnes and B. D. Bartolo, �??On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,�?? J. Luminescence. 75, 89-98 (1997)
[CrossRef]

J. Opt. Soc. Am. B. (2)

V. Sudesh, K. Asai, �??Spectroscopic and diode-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: A comparative study,�?? J. Opt. Soc. Am. B. 20, 1829-1837 (2003)
[CrossRef]

N. P. Barnes, W. J. Rodriguez and B. M. Walsh, �??Ho:Tm:YLF laser amplifiers,�?? J. Opt. Soc. Am. B. 13, 2872-2882 (1996)
[CrossRef]

Journal of luminescence (1)

B. M. Walsh, N. P. Barnes and B. D. Bartolo, �??The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence in YAG and YLF,�?? Journal of luminescence. 90, 39-48 (2000)
[CrossRef]

Opt. Commun. (1)

C. Nagasawa, D. Sakaizawa, H. Hara and K. Mizutani, �??Lasing characteristics of a CW Tm,Ho:YLF double cavity microchip laser,�?? Opt. Commun. 234, 301-304 (2004)
[CrossRef]

Opt. Lett. (1)

Optics and lasers in Engineering (1)

B. Barronti, F. Cornacchia, A. Di Lieto, P. Maroni, A. Toncelli and M. Tonelli, �??Room temperature 2µm Tm,Ho:YLF laser,�?? Optics and lasers in Engineering. 39, 277-282 (2003)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The schematic diagram of LD-pumped Tm,Ho:YLF laser

Fig. 2.
Fig. 2.

Output power as a function of the incident pump power with different transmission output couplers

Fig. 3.
Fig. 3.

The output properties of the diode- pumped Tm,Ho:YLF laser under different temperatures To achieve single frequency operation, two solid, uncoated fused silica etalons were used to control and tune the laser wavelength by angle tuning the etalons. The two etalons each had a thickness of 0.1 and 1 mm. The 0.1 mm etalon was placed in a standard mirror mount that allowed a two-axis rotation of the etalon and was mounted at a fixed angle in the cavity. The 1 mm etalon was placed in a second two-axis mount allowing continuous angle tuning by hand. The thin etalon was used to control the laser wavelength and the thick etalon was used to obtain single frequency operation. Fig. 4 plots the single frequency output power as a function of the incident pump power. The maximum power was 113mW. Fig. 5 is a typical output signal from the scanning Fabry-Perot interferometer for a free spectral range of 4 GHz. The upper trace is the Fabry-Perot ramp voltage and the lower trace is the voltage of the PbS detector measuring the Tm,Ho:YLF laser transmission through the Fabry-Perot interferometer. As can be seen, the laser operated on a single longitudinal mode. By changing the angle of the 1mm thick etalon, it was found that the wavelength of the single longitudinal mode could be tuned over a range of approximation 6nm.

Fig. 4.
Fig. 4.

Multimode and single frequency output power versus pump power

Fig. 5.
Fig. 5.

Fabry-Perot spectrum of the single frequency Tm,Ho:YLF laser

Fig. 6.
Fig. 6.

Pulse width versus repetition frequency

Fig. 7.
Fig. 7.

Pulse energy versus repetition frequency

Fig. 8.
Fig. 8.

Pulse profile on the oscilloscope at 1 kHz

Fig. 9.
Fig. 9.

Pulse train on the oscilloscope at 1 kHz

Fig. 10.
Fig. 10.

Energy level diagram for Tm,Ho:YLF laser

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

r p ( r , z ) = 2 α η α π ω p 2 exp ( 2 r 2 ω p 2 ) exp ( α z )
ϕ l ( r , z ) = 2 π ω l 2 L eff exp ( 2 r 2 ω l 2 )
P th = P th 0 ( 1 + β )
P th 0 = h ν p τ η p η α ff Ho L eff J 1 ( n δ 2 σ + f l N Ho l )
β = Q τ 2 η p η α P th 0 h ν p J 2 J 1
η s = η p η a Th ν l J 2 L eff h ν p ( σ ff Ho η α η p τ P th h ν p J f l N Ho σ J )
J = r p ( r , z ) s 0 ( r , z ) dV
J = r p 2 ( r , z ) s 0 ( r , z ) dV
J = r p ( r , z ) s 0 2 ( r , z ) dV
J = s 0 2 ( r , z ) dV

Metrics