Abstract

We have demonstrated a new type of high repetition rate 46.9 nm capillary discharge laser that fits on top of a small desk and that it does not require a Marx generator for its excitation. The relatively low voltage required for its operation allows a reduction of nearly one order of magnitude in the size of the pulsed power unit relative to previous capillary discharge lasers. Laser pulses with an energy of ~13 µJ are generated at repetition rates up to 12 Hz. About (2–3)×104 laser shots can be generated with a single capillary. This new type of portable laser is an easily accessible source of intense short wavelength laser light for applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B.J. MacGowan, L.B. Da Silva, D.J. Fields, C.J. Keane, J.A. Koch, R.A. London, D.L. Matthews, S. Maxon, S. Mrowka, A.L. Osterheld, J.H. Scofield, G. Shimkaveg, J.E. Trebes, and R.S. Walling, �??Short wavelength x-ray laser research at the Lawrence Livermore National Laboratory,�?? Phys. Fluids B 4, 2326, (1992).
    [CrossRef]
  2. A. Carrillon et al. H.Z. Chen, P. Dhez, L. Dwivedi, J. Jacoby, P. Jaegle, G. Jamelot, J. Zhang, M.H. Key, A. Kidd, A. Klishnick, R. Kodama, J. Krishnan, C.L.S. Lewis, D. Neely, P. Norreys, D. Oneill, G.J. Pert, S.A. Ramsden, J.P. Raucourt, G.J. Tallents, and J. Uhomoibhi, �??Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm,�?? Phys. Rev. Lett. 68, 2917, (1992)
    [CrossRef]
  3. J.J. Rocca, V.N. Shlyaptsev, F.G. Tomasel, O.D. Cortazar, D. Hartshorn, and J.L.A. Chilla, �??Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,�?? Phys. Rev. Lett. 73, 2192 (1994).
    [CrossRef] [PubMed]
  4. J. Dunn, Y. Li, A.L. Osterheld, J. Nilsen, J.R. Hunter, V.N. Shlyaptsev, �??Gain Saturation Regime for Laser-Driven Tabletop, Transient Ni-Like Ion X-Ray Lasers,�?? Phys. Rev. Lett. 84, 4834 (2000).
    [CrossRef] [PubMed]
  5. S. Sebban,. R. Haroutunian, Ph. Balcou, et al., Phys. Rev. Lett. 86, 3004 (2001) and S. Sebban, T. Mocek, D. Ross, et al., �??Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm,�?? Phys. Rev. Lett. 89, 253901 (2002).
    [CrossRef] [PubMed]
  6. K.A. Jenulewicz, A. Lucianetti, G. Pruebe, W. Sadner and P.V. Nickles, �??Saturated Ni-like Ag x-ray laser at 13.9 nm pumped by a single picosecond laser pulse,�?? Phys. Rev. A 68, 051802 (2003).
    [CrossRef]
  7. A. Butler, A.J. Gonsalves, C.M. McKenna, D.J. Spence, S.M. Hooker, S. Sebban, T. Mocek, I. Betttaibi and B. Cros, �??41.8-nm Xe8+ laser driven in a plasma waveguide,�?? Phys. Rev. A 70, 023821 (2004).
    [CrossRef]
  8. J.J. Rocca, D.P. Clark, J.L.A. Chilla, and V.N. Shlyaptsev, �??Energy Extraction and Achievement of the Saturation Limit in a Discharge-Pumped Table-Top Soft X-Ray Amplifier,�?? Phys. Rev. Lett. 77, 1476 (1996).
    [CrossRef] [PubMed]
  9. B.R. Benware, C.D. Macchietto, C.H. Moreno and J.J. Rocca, �??Demonstration of a High Average Power Tabletop Soft X-Ray Laser,�?? Phys. Rev. Lett. 81, 5804 (1998).
    [CrossRef]
  10. C.D. Machietto, B.R. Benware, and J.J. Rocca, �??Generation of millijoule-levelsoft-x-ray laser pulses at a 4-Hz repetitionrate in a highly saturated tabletop capillary dischargeamplifier,�?? Optics Lett. 24, 1115 (1999).
    [CrossRef]
  11. A. Ben-Kish, M. Shuker, R.A. Nemirowsky, A. Ron, and J.L. Schwob, �??Plasma Dynamics in Capillary Discharge Soft X-Ray Lasers,�?? Phys. Rev. Lett. 87, 1 (2001).
    [CrossRef]
  12. A. Ritucci, G. Tomassetti, A. Reale, L. Palladino, L. Reale, F. Flora, L. Mezi, S.V. Kukhlevsky., A. Faenov, T. Pikuz, �??Investigation of a highly saturated soft X-ray amplification in a capillary discharge plasma waveguide,�?? Applied Phys. B 78, 965 (2004).
    [CrossRef]
  13. J. Filevich, K. Kanizay, M.C. Marconi, J.L.A. Chilla, and J.J. Rocca., �??Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,�?? Optics Lett. 25, 356 (2000).
    [CrossRef]
  14. A. Artioukov, B.R. Benware, J.J. Rocca, M. Forsythe, Y.A. Uspenskii, A.V. Vinogradov, �??Determination of XUV optical constants by reflectometry using a high-repetition rate 46.9-nm laser,�?? IEEE J. Sel. Top. Quantum Electon. 5, 1495 (1999).
    [CrossRef]
  15. B.R. Benware, A. Ozols, J.J. Rocca, I.A. Artioukov, V.V. Kondratenko and A.V. Vinogradov, �??Focusing of a tabletop sof t-x-ray laser beam and laser ablation,�?? Opt. Lett. 24, 1714 (1999).
    [CrossRef]
  16. M.Seminario, J.J. Rocca, R.Depine, B. Bach, and B. Bach, �??Characterization of Diffraction Gratings by use of a Tabletop Soft-X-Ray Laser,�?? Appl. Optics 40, 5539 (2001).
    [CrossRef]
  17. G. Tomassetti, A. Ritucci, A. Reale, L. Palladino, L. Reale, L. Arriza, G. Baldacchini, F. Bonfigli, F. Flora, L. Mezi, R.M. Montereali, S.V. Kukhlevsky, A. Faenov, T. Pikuz, J. Kaiser, �??High-resolution imaging of a soft-X-ray laser beam by color centers excitation in lithium fluoride crystals,�?? Europhys. Lett. 63, 681 (2003).
    [CrossRef]
  18. M.G. Capeluto, G. Vaschenko, M. Grisham, M.C. Marconi et al., �??Nanopatterning with interferometric lithograph using a compact λ=46.9 nm laser,�?? (submitted to IEEE Transac. on Nanotechnology).
  19. B. Luther, L. Furfaro, A. Klix, and J.J. Rocca, �??Femtosecond laser triggering of a sub-100 picosecond jitter high-voltage spark gap,�?? Appl. Phys. Lett. 79, 3248-3250 (2001).
    [CrossRef]
  20. C.H. Moreno, M.C. Marconi, V.N. Shlyaptsev, B. Benware, C. Macchietto, J.L.A. Chilla, J.J. Rocca, �??Two-dimensional near-field and far-field imaging of a Ne-like Ar capillary discharge table-top soft-x-ray laser,�?? Phys. Rev. A 58, 1509 (1998).
    [CrossRef]
  21. J.L.A. Chilla and J.J. Rocca, �??Beam optics of gain-guided soft-x-ray lasers in cylindrical plasmas,�?? J. Opt. Soc. Am. B 13, 2841 (1996).
    [CrossRef]
  22. S. Le Pape, Ph. Zeitoun, M. Idir, P. Dhez, J.J. Rocca, and M. François, �??Electromagnetic-Field Distribution Measurements in the Soft X-Ray Range: Full Characterization of a Soft X-Ray Laser Beam,�?? Phys Rev. Lett. 88, 183901 (2002).
    [CrossRef] [PubMed]

Appl. Optics (1)

M.Seminario, J.J. Rocca, R.Depine, B. Bach, and B. Bach, �??Characterization of Diffraction Gratings by use of a Tabletop Soft-X-Ray Laser,�?? Appl. Optics 40, 5539 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

B. Luther, L. Furfaro, A. Klix, and J.J. Rocca, �??Femtosecond laser triggering of a sub-100 picosecond jitter high-voltage spark gap,�?? Appl. Phys. Lett. 79, 3248-3250 (2001).
[CrossRef]

Applied Phys. B (1)

A. Ritucci, G. Tomassetti, A. Reale, L. Palladino, L. Reale, F. Flora, L. Mezi, S.V. Kukhlevsky., A. Faenov, T. Pikuz, �??Investigation of a highly saturated soft X-ray amplification in a capillary discharge plasma waveguide,�?? Applied Phys. B 78, 965 (2004).
[CrossRef]

Europhys. Lett. (1)

G. Tomassetti, A. Ritucci, A. Reale, L. Palladino, L. Reale, L. Arriza, G. Baldacchini, F. Bonfigli, F. Flora, L. Mezi, R.M. Montereali, S.V. Kukhlevsky, A. Faenov, T. Pikuz, J. Kaiser, �??High-resolution imaging of a soft-X-ray laser beam by color centers excitation in lithium fluoride crystals,�?? Europhys. Lett. 63, 681 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electon. (1)

A. Artioukov, B.R. Benware, J.J. Rocca, M. Forsythe, Y.A. Uspenskii, A.V. Vinogradov, �??Determination of XUV optical constants by reflectometry using a high-repetition rate 46.9-nm laser,�?? IEEE J. Sel. Top. Quantum Electon. 5, 1495 (1999).
[CrossRef]

IEEE Transac. on Nanotechnology (1)

M.G. Capeluto, G. Vaschenko, M. Grisham, M.C. Marconi et al., �??Nanopatterning with interferometric lithograph using a compact λ=46.9 nm laser,�?? (submitted to IEEE Transac. on Nanotechnology).

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Optics Lett. (2)

J. Filevich, K. Kanizay, M.C. Marconi, J.L.A. Chilla, and J.J. Rocca., �??Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,�?? Optics Lett. 25, 356 (2000).
[CrossRef]

C.D. Machietto, B.R. Benware, and J.J. Rocca, �??Generation of millijoule-levelsoft-x-ray laser pulses at a 4-Hz repetitionrate in a highly saturated tabletop capillary dischargeamplifier,�?? Optics Lett. 24, 1115 (1999).
[CrossRef]

Phys Rev. Lett. (1)

S. Le Pape, Ph. Zeitoun, M. Idir, P. Dhez, J.J. Rocca, and M. François, �??Electromagnetic-Field Distribution Measurements in the Soft X-Ray Range: Full Characterization of a Soft X-Ray Laser Beam,�?? Phys Rev. Lett. 88, 183901 (2002).
[CrossRef] [PubMed]

Phys. Fluids B (1)

B.J. MacGowan, L.B. Da Silva, D.J. Fields, C.J. Keane, J.A. Koch, R.A. London, D.L. Matthews, S. Maxon, S. Mrowka, A.L. Osterheld, J.H. Scofield, G. Shimkaveg, J.E. Trebes, and R.S. Walling, �??Short wavelength x-ray laser research at the Lawrence Livermore National Laboratory,�?? Phys. Fluids B 4, 2326, (1992).
[CrossRef]

Phys. Rev. A (3)

K.A. Jenulewicz, A. Lucianetti, G. Pruebe, W. Sadner and P.V. Nickles, �??Saturated Ni-like Ag x-ray laser at 13.9 nm pumped by a single picosecond laser pulse,�?? Phys. Rev. A 68, 051802 (2003).
[CrossRef]

A. Butler, A.J. Gonsalves, C.M. McKenna, D.J. Spence, S.M. Hooker, S. Sebban, T. Mocek, I. Betttaibi and B. Cros, �??41.8-nm Xe8+ laser driven in a plasma waveguide,�?? Phys. Rev. A 70, 023821 (2004).
[CrossRef]

C.H. Moreno, M.C. Marconi, V.N. Shlyaptsev, B. Benware, C. Macchietto, J.L.A. Chilla, J.J. Rocca, �??Two-dimensional near-field and far-field imaging of a Ne-like Ar capillary discharge table-top soft-x-ray laser,�?? Phys. Rev. A 58, 1509 (1998).
[CrossRef]

Phys. Rev. Lett. (7)

J.J. Rocca, D.P. Clark, J.L.A. Chilla, and V.N. Shlyaptsev, �??Energy Extraction and Achievement of the Saturation Limit in a Discharge-Pumped Table-Top Soft X-Ray Amplifier,�?? Phys. Rev. Lett. 77, 1476 (1996).
[CrossRef] [PubMed]

B.R. Benware, C.D. Macchietto, C.H. Moreno and J.J. Rocca, �??Demonstration of a High Average Power Tabletop Soft X-Ray Laser,�?? Phys. Rev. Lett. 81, 5804 (1998).
[CrossRef]

A. Carrillon et al. H.Z. Chen, P. Dhez, L. Dwivedi, J. Jacoby, P. Jaegle, G. Jamelot, J. Zhang, M.H. Key, A. Kidd, A. Klishnick, R. Kodama, J. Krishnan, C.L.S. Lewis, D. Neely, P. Norreys, D. Oneill, G.J. Pert, S.A. Ramsden, J.P. Raucourt, G.J. Tallents, and J. Uhomoibhi, �??Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm,�?? Phys. Rev. Lett. 68, 2917, (1992)
[CrossRef]

J.J. Rocca, V.N. Shlyaptsev, F.G. Tomasel, O.D. Cortazar, D. Hartshorn, and J.L.A. Chilla, �??Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,�?? Phys. Rev. Lett. 73, 2192 (1994).
[CrossRef] [PubMed]

J. Dunn, Y. Li, A.L. Osterheld, J. Nilsen, J.R. Hunter, V.N. Shlyaptsev, �??Gain Saturation Regime for Laser-Driven Tabletop, Transient Ni-Like Ion X-Ray Lasers,�?? Phys. Rev. Lett. 84, 4834 (2000).
[CrossRef] [PubMed]

S. Sebban,. R. Haroutunian, Ph. Balcou, et al., Phys. Rev. Lett. 86, 3004 (2001) and S. Sebban, T. Mocek, D. Ross, et al., �??Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm,�?? Phys. Rev. Lett. 89, 253901 (2002).
[CrossRef] [PubMed]

A. Ben-Kish, M. Shuker, R.A. Nemirowsky, A. Ron, and J.L. Schwob, �??Plasma Dynamics in Capillary Discharge Soft X-Ray Lasers,�?? Phys. Rev. Lett. 87, 1 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic representation of the 46.9nm capillary discharge laser. (b) Photograph of the laser device. A handheld multimeter is shown to provide a reference of scale.

Fig. 2.
Fig. 2.

Discharge current pulse (upper trace) and laser output pulse (lower trace). The kink in the current trace is caused by the abrupt increase of the plasma column inductance at the time of the pinch.

Fig. 3.
Fig. 3.

Data corresponding to 12 Hz repetition rate laser operation. The data is for 1500 shots of continuous operation. (a) Peak current; (b) Measured laser output pulse energy. The average pulse energy is 13 uJ±1.3 uJ; (c) distribution of the laser output pulse energy, (d) time delay statistics of the laser pulse respect to TTL signal into the high voltage trigger unit.

Fig. 4.
Fig. 4.

Variation of the laser output pulse energy as a function of the number of shots. The data was obtained operating the laser at 12 Hz repetition rate. The output energy is observed to degrade to half of the maximum value in about 2–3 10 4 discharge shots

Fig. 5.
Fig. 5.

(a) Far field image of the laser beam measured at 157.5 cm from the capillary exit. (b) corresponding intensity lineout.

Metrics