Abstract

The aim of the present paper is to provide a comprehensive analysis of the coupling losses in multi-step index (MSI) fibres. Their light power acceptance properties are investigated to obtain the corresponding analytical expressions taking into account longitudinal, transverse, and angular misalignments. For this purpose, a uniform power distribution is assumed. In addition, we perform several experimental measurements and computer simulations in order to calculate the coupling losses for two different MSI polymer optical fibres (MSI-POFs). These results serve us to validate the theoretical expressions we have obtained.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of intrinsic coupling loss in multi-step index optical fibres

Gotzon Aldabaldetreku, Gaizka Durana, Joseba Zubia, Jon Arrue, Felipe Jiménez, and Javier Mateo
Opt. Express 13(9) 3283-3295 (2005)

Coupling losses in perfluorinated multi-core polymer optical fibers

Gaizka Durana, Gotzon Aldabaldetreku, Joseba Zubia, Jon Arrue, and Chikafumi Tanaka
Opt. Express 16(11) 7929-7942 (2008)

Power transmission coefficients for multi-step index optical fibres

Gotzon Aldabaldetreku, Joseba Zubia, Gaizka Durana, and Jon Arrue
Opt. Express 14(4) 1413-1429 (2006)

References

  • View by:
  • |
  • |
  • |

  1. V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, “Production of multilayer polymer optical fibers,” in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications-POF’99, pp. 98–101 (Chiba (Japan), 1999).
  2. K. Irie, Y. Uozu, and T. Yoshimura, “Structure design and analysis of broadband POF,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 73–79 (Amsterdam (The Netherlands), 2001).
  3. J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
    [Crossref]
  4. Mitsubishi Rayon Co., Ltd.: “Eska-Miu,” URL http://www.pofeska.com.
  5. D. Gloge, “Offset and Tilt Loss in Optical Fiber Splices,” Bell Syst. Tech. J. 55, 905–916 (1976).
  6. T. C. Chu and A. R. McCormick, “Measurements of Loss Due to Offset, End Separation, and Angular Misalignment in Graded Index Fibers Excited by an Incoherent Source,” Bell Syst. Tech. J. 57, 595–602 (1978).
  7. D. Marcuse, D. Gloge, and E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds., chap. 3 (Academic Press, Inc., San Diego, California, 1979).
  8. G. Keiser, Optical Fiber Communications (McGraw-Hill, Singapore, 1991).
  9. F. L. Thiel and R. M. Hawk, “Optical waveguide cable connection,” Appl. Opt. 15, 2785–2791 (1976).
    [Crossref] [PubMed]
  10. G. Jiang, R. F. Shi, and A. F. Garito, “Mode Coupling and Equilibrium Mode Distribution Conditions in Plastic Optical Fibers,” IEEE Photon. Technol. Lett. 9, 1128–1131 (1997).
    [Crossref]
  11. Japanese Standards Association, “Test methods for attenuation of all plastic multimode optical fibers,” Tech. Rep. JIS C 6863, JIS, Tokyo, Japan (1990).
  12. B. Lohmüller, A. Bachmann, O. Ziemann, A. Sawaki, H. Shirai, and K. Suzuki, “The Use of LEPAS System for POF Characterization,” in 11th International POF Conference 2002: Proceedings, pp. 263–266 (Tokyo (Japan), 2002).
  13. D. Marcuse, Principles of Optical Fiber Measurements, chap. 4 (Academic Press, Inc., London, 1981).
  14. Japanese Standards Association, “Test methods for structural parameters of all plastic multimode optical fibers,” Tech. Rep. JIS C 6862, JIS, Tokyo, Japan (1990).
  15. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  16. J. Arrue, J. Zubia, G. Durana, J. Mateo, and M. Lopez-Amo, “Model for the propagation of pulses and mode scrambling in a real POF with structural imperfections,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 301–308 (Amsterdam (The Netherlands), 2001).
  17. J. Zubia, H. Poisel, C.-A. Bunge, G. Aldabaldetreku, and J. Arrue, “POF Modelling,” in 11th International POF Conference 2002: Proceedings, pp. 221–224 (Tokyo (Japan), 2002).
  18. T. Ishigure, M. Kano, and Y. Koike, “Which is a More Serious Factor to the Bandwidth of GI POF: Differential Mode Attenuation or Mode Coupling?” J. Lightwave Technol. 18, 959–965 (2000).
    [Crossref]
  19. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, “Quantitative Estimates of Mode Coupling and Differential Modal Attenuation in Perfluorinated Graded-Index Plastic Optical Fiber,” J. Lightwave Technol. 21, 111–121 (2003).
    [Crossref]
  20. S. Savović and A. Djordjevich, “Optical power flow in plastic-clad silica fibers,” Appl. Opt. 41, 7588–7591 (2002).
    [Crossref]
  21. S. Savović and A. Djordjevich, “Influence of numerical aperture on mode coupling in step-index plastic optical fibers,” Appl. Opt. 43, 5542–5546 (2004).
    [Crossref] [PubMed]
  22. A. Ankiewicz and C. Pask, “The effects of source configuration on bandwidth and loss measurements in optical fibres,” Optical and Quantum Electronics 15, 463–470 (1983).
    [Crossref]
  23. J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, I. Garces, and F. Jiménez, “Design of mode scramblers for step-index and graded-index plastic optical fibres,” J. Lightwave Technol. 23, 1253–1260 (2005).
    [Crossref]
  24. C. M. Miller and S. C. Mettler, “A Loss Model for Parabolic-Profile Fiber Splices,” Bell Syst. Tech. J. 57, 3167–3180 (1978).
  25. S. C. Mettler, “A General Characterization of Splice Loss for Multimode Optical Fibers,” Bell Syst. Tech. J. 58, 2163–2182 (1979).
  26. R. J. Pieper and A. Nassopoulos, “The Eikonal Ray Equations in Optical Fibers,” IEEE Trans. Educ. 40, 139–143 (1997).
    [Crossref]
  27. D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

2005 (1)

2004 (2)

S. Savović and A. Djordjevich, “Influence of numerical aperture on mode coupling in step-index plastic optical fibers,” Appl. Opt. 43, 5542–5546 (2004).
[Crossref] [PubMed]

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
[Crossref]

2003 (1)

2002 (1)

2000 (1)

1997 (2)

G. Jiang, R. F. Shi, and A. F. Garito, “Mode Coupling and Equilibrium Mode Distribution Conditions in Plastic Optical Fibers,” IEEE Photon. Technol. Lett. 9, 1128–1131 (1997).
[Crossref]

R. J. Pieper and A. Nassopoulos, “The Eikonal Ray Equations in Optical Fibers,” IEEE Trans. Educ. 40, 139–143 (1997).
[Crossref]

1983 (1)

A. Ankiewicz and C. Pask, “The effects of source configuration on bandwidth and loss measurements in optical fibres,” Optical and Quantum Electronics 15, 463–470 (1983).
[Crossref]

1979 (1)

S. C. Mettler, “A General Characterization of Splice Loss for Multimode Optical Fibers,” Bell Syst. Tech. J. 58, 2163–2182 (1979).

1978 (2)

T. C. Chu and A. R. McCormick, “Measurements of Loss Due to Offset, End Separation, and Angular Misalignment in Graded Index Fibers Excited by an Incoherent Source,” Bell Syst. Tech. J. 57, 595–602 (1978).

C. M. Miller and S. C. Mettler, “A Loss Model for Parabolic-Profile Fiber Splices,” Bell Syst. Tech. J. 57, 3167–3180 (1978).

1976 (2)

D. Gloge, “Offset and Tilt Loss in Optical Fiber Splices,” Bell Syst. Tech. J. 55, 905–916 (1976).

F. L. Thiel and R. M. Hawk, “Optical waveguide cable connection,” Appl. Opt. 15, 2785–2791 (1976).
[Crossref] [PubMed]

1973 (1)

D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

Aldabaldetreku, G.

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, I. Garces, and F. Jiménez, “Design of mode scramblers for step-index and graded-index plastic optical fibres,” J. Lightwave Technol. 23, 1253–1260 (2005).
[Crossref]

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
[Crossref]

J. Zubia, H. Poisel, C.-A. Bunge, G. Aldabaldetreku, and J. Arrue, “POF Modelling,” in 11th International POF Conference 2002: Proceedings, pp. 221–224 (Tokyo (Japan), 2002).

Ankiewicz, A.

A. Ankiewicz and C. Pask, “The effects of source configuration on bandwidth and loss measurements in optical fibres,” Optical and Quantum Electronics 15, 463–470 (1983).
[Crossref]

Arrue, J.

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, I. Garces, and F. Jiménez, “Design of mode scramblers for step-index and graded-index plastic optical fibres,” J. Lightwave Technol. 23, 1253–1260 (2005).
[Crossref]

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
[Crossref]

J. Zubia, H. Poisel, C.-A. Bunge, G. Aldabaldetreku, and J. Arrue, “POF Modelling,” in 11th International POF Conference 2002: Proceedings, pp. 221–224 (Tokyo (Japan), 2002).

J. Arrue, J. Zubia, G. Durana, J. Mateo, and M. Lopez-Amo, “Model for the propagation of pulses and mode scrambling in a real POF with structural imperfections,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 301–308 (Amsterdam (The Netherlands), 2001).

Bachmann, A.

B. Lohmüller, A. Bachmann, O. Ziemann, A. Sawaki, H. Shirai, and K. Suzuki, “The Use of LEPAS System for POF Characterization,” in 11th International POF Conference 2002: Proceedings, pp. 263–266 (Tokyo (Japan), 2002).

Baskakova, T.

V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, “Production of multilayer polymer optical fibers,” in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications-POF’99, pp. 98–101 (Chiba (Japan), 1999).

Bunge, C. A.

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
[Crossref]

Bunge, C.-A.

J. Zubia, H. Poisel, C.-A. Bunge, G. Aldabaldetreku, and J. Arrue, “POF Modelling,” in 11th International POF Conference 2002: Proceedings, pp. 221–224 (Tokyo (Japan), 2002).

Chu, T. C.

T. C. Chu and A. R. McCormick, “Measurements of Loss Due to Offset, End Separation, and Angular Misalignment in Graded Index Fibers Excited by an Incoherent Source,” Bell Syst. Tech. J. 57, 595–602 (1978).

Djordjevich, A.

Durana, G.

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, I. Garces, and F. Jiménez, “Design of mode scramblers for step-index and graded-index plastic optical fibres,” J. Lightwave Technol. 23, 1253–1260 (2005).
[Crossref]

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
[Crossref]

J. Arrue, J. Zubia, G. Durana, J. Mateo, and M. Lopez-Amo, “Model for the propagation of pulses and mode scrambling in a real POF with structural imperfections,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 301–308 (Amsterdam (The Netherlands), 2001).

Garces, I.

Garito, A. F.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode Coupling and Equilibrium Mode Distribution Conditions in Plastic Optical Fibers,” IEEE Photon. Technol. Lett. 9, 1128–1131 (1997).
[Crossref]

Gloge, D.

D. Gloge, “Offset and Tilt Loss in Optical Fiber Splices,” Bell Syst. Tech. J. 55, 905–916 (1976).

D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

D. Marcuse, D. Gloge, and E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds., chap. 3 (Academic Press, Inc., San Diego, California, 1979).

Golowich, S. E.

Hawk, R. M.

Irie, K.

K. Irie, Y. Uozu, and T. Yoshimura, “Structure design and analysis of broadband POF,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 73–79 (Amsterdam (The Netherlands), 2001).

Ishigure, T.

Jiang, G.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode Coupling and Equilibrium Mode Distribution Conditions in Plastic Optical Fibers,” IEEE Photon. Technol. Lett. 9, 1128–1131 (1997).
[Crossref]

Jiménez, F.

Kano, M.

Keiser, G.

G. Keiser, Optical Fiber Communications (McGraw-Hill, Singapore, 1991).

Klein, K.

V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, “Production of multilayer polymer optical fibers,” in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications-POF’99, pp. 98–101 (Chiba (Japan), 1999).

Knudsen, E.

Koike, Y.

Lavrova, Z.

V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, “Production of multilayer polymer optical fibers,” in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications-POF’99, pp. 98–101 (Chiba (Japan), 1999).

Levin, V.

V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, “Production of multilayer polymer optical fibers,” in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications-POF’99, pp. 98–101 (Chiba (Japan), 1999).

Lohmüller, B.

B. Lohmüller, A. Bachmann, O. Ziemann, A. Sawaki, H. Shirai, and K. Suzuki, “The Use of LEPAS System for POF Characterization,” in 11th International POF Conference 2002: Proceedings, pp. 263–266 (Tokyo (Japan), 2002).

Lopez-Amo, M.

J. Arrue, J. Zubia, G. Durana, J. Mateo, and M. Lopez-Amo, “Model for the propagation of pulses and mode scrambling in a real POF with structural imperfections,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 301–308 (Amsterdam (The Netherlands), 2001).

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Marcatili, E. A. J.

D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

D. Marcuse, D. Gloge, and E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds., chap. 3 (Academic Press, Inc., San Diego, California, 1979).

Marcuse, D.

D. Marcuse, D. Gloge, and E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds., chap. 3 (Academic Press, Inc., San Diego, California, 1979).

D. Marcuse, Principles of Optical Fiber Measurements, chap. 4 (Academic Press, Inc., London, 1981).

Mateo, J.

J. Arrue, J. Zubia, G. Durana, J. Mateo, and M. Lopez-Amo, “Model for the propagation of pulses and mode scrambling in a real POF with structural imperfections,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 301–308 (Amsterdam (The Netherlands), 2001).

McCormick, A. R.

T. C. Chu and A. R. McCormick, “Measurements of Loss Due to Offset, End Separation, and Angular Misalignment in Graded Index Fibers Excited by an Incoherent Source,” Bell Syst. Tech. J. 57, 595–602 (1978).

Mettler, S. C.

S. C. Mettler, “A General Characterization of Splice Loss for Multimode Optical Fibers,” Bell Syst. Tech. J. 58, 2163–2182 (1979).

C. M. Miller and S. C. Mettler, “A Loss Model for Parabolic-Profile Fiber Splices,” Bell Syst. Tech. J. 57, 3167–3180 (1978).

Miller, C. M.

C. M. Miller and S. C. Mettler, “A Loss Model for Parabolic-Profile Fiber Splices,” Bell Syst. Tech. J. 57, 3167–3180 (1978).

Nassopoulos, A.

R. J. Pieper and A. Nassopoulos, “The Eikonal Ray Equations in Optical Fibers,” IEEE Trans. Educ. 40, 139–143 (1997).
[Crossref]

Pask, C.

A. Ankiewicz and C. Pask, “The effects of source configuration on bandwidth and loss measurements in optical fibres,” Optical and Quantum Electronics 15, 463–470 (1983).
[Crossref]

Pieper, R. J.

R. J. Pieper and A. Nassopoulos, “The Eikonal Ray Equations in Optical Fibers,” IEEE Trans. Educ. 40, 139–143 (1997).
[Crossref]

Poisel, H.

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
[Crossref]

V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, “Production of multilayer polymer optical fibers,” in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications-POF’99, pp. 98–101 (Chiba (Japan), 1999).

J. Zubia, H. Poisel, C.-A. Bunge, G. Aldabaldetreku, and J. Arrue, “POF Modelling,” in 11th International POF Conference 2002: Proceedings, pp. 221–224 (Tokyo (Japan), 2002).

Reed, W. A.

Savovic, S.

Sawaki, A.

B. Lohmüller, A. Bachmann, O. Ziemann, A. Sawaki, H. Shirai, and K. Suzuki, “The Use of LEPAS System for POF Characterization,” in 11th International POF Conference 2002: Proceedings, pp. 263–266 (Tokyo (Japan), 2002).

Shi, R. F.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode Coupling and Equilibrium Mode Distribution Conditions in Plastic Optical Fibers,” IEEE Photon. Technol. Lett. 9, 1128–1131 (1997).
[Crossref]

Shirai, H.

B. Lohmüller, A. Bachmann, O. Ziemann, A. Sawaki, H. Shirai, and K. Suzuki, “The Use of LEPAS System for POF Characterization,” in 11th International POF Conference 2002: Proceedings, pp. 263–266 (Tokyo (Japan), 2002).

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Suzuki, K.

B. Lohmüller, A. Bachmann, O. Ziemann, A. Sawaki, H. Shirai, and K. Suzuki, “The Use of LEPAS System for POF Characterization,” in 11th International POF Conference 2002: Proceedings, pp. 263–266 (Tokyo (Japan), 2002).

Thiel, F. L.

Uozu, Y.

K. Irie, Y. Uozu, and T. Yoshimura, “Structure design and analysis of broadband POF,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 73–79 (Amsterdam (The Netherlands), 2001).

White, W.

Yoshimura, T.

K. Irie, Y. Uozu, and T. Yoshimura, “Structure design and analysis of broadband POF,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 73–79 (Amsterdam (The Netherlands), 2001).

Ziemann, O.

B. Lohmüller, A. Bachmann, O. Ziemann, A. Sawaki, H. Shirai, and K. Suzuki, “The Use of LEPAS System for POF Characterization,” in 11th International POF Conference 2002: Proceedings, pp. 263–266 (Tokyo (Japan), 2002).

Zubia, J.

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, I. Garces, and F. Jiménez, “Design of mode scramblers for step-index and graded-index plastic optical fibres,” J. Lightwave Technol. 23, 1253–1260 (2005).
[Crossref]

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
[Crossref]

J. Zubia, H. Poisel, C.-A. Bunge, G. Aldabaldetreku, and J. Arrue, “POF Modelling,” in 11th International POF Conference 2002: Proceedings, pp. 221–224 (Tokyo (Japan), 2002).

J. Arrue, J. Zubia, G. Durana, J. Mateo, and M. Lopez-Amo, “Model for the propagation of pulses and mode scrambling in a real POF with structural imperfections,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 301–308 (Amsterdam (The Netherlands), 2001).

Zubkov, A.

V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, “Production of multilayer polymer optical fibers,” in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications-POF’99, pp. 98–101 (Chiba (Japan), 1999).

Appl. Opt. (3)

Bell Syst. Tech. J. (5)

C. M. Miller and S. C. Mettler, “A Loss Model for Parabolic-Profile Fiber Splices,” Bell Syst. Tech. J. 57, 3167–3180 (1978).

S. C. Mettler, “A General Characterization of Splice Loss for Multimode Optical Fibers,” Bell Syst. Tech. J. 58, 2163–2182 (1979).

D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

D. Gloge, “Offset and Tilt Loss in Optical Fiber Splices,” Bell Syst. Tech. J. 55, 905–916 (1976).

T. C. Chu and A. R. McCormick, “Measurements of Loss Due to Offset, End Separation, and Angular Misalignment in Graded Index Fibers Excited by an Incoherent Source,” Bell Syst. Tech. J. 57, 595–602 (1978).

Fiber and Integrated Optics (1)

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, “Geometric Optics Analysis of Multi-Step Index Optical Fibers,” Fiber and Integrated Optics 23, 121–156 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. Jiang, R. F. Shi, and A. F. Garito, “Mode Coupling and Equilibrium Mode Distribution Conditions in Plastic Optical Fibers,” IEEE Photon. Technol. Lett. 9, 1128–1131 (1997).
[Crossref]

IEEE Trans. Educ. (1)

R. J. Pieper and A. Nassopoulos, “The Eikonal Ray Equations in Optical Fibers,” IEEE Trans. Educ. 40, 139–143 (1997).
[Crossref]

J. Lightwave Technol. (3)

Optical and Quantum Electronics (1)

A. Ankiewicz and C. Pask, “The effects of source configuration on bandwidth and loss measurements in optical fibres,” Optical and Quantum Electronics 15, 463–470 (1983).
[Crossref]

Other (12)

Japanese Standards Association, “Test methods for attenuation of all plastic multimode optical fibers,” Tech. Rep. JIS C 6863, JIS, Tokyo, Japan (1990).

B. Lohmüller, A. Bachmann, O. Ziemann, A. Sawaki, H. Shirai, and K. Suzuki, “The Use of LEPAS System for POF Characterization,” in 11th International POF Conference 2002: Proceedings, pp. 263–266 (Tokyo (Japan), 2002).

D. Marcuse, Principles of Optical Fiber Measurements, chap. 4 (Academic Press, Inc., London, 1981).

Japanese Standards Association, “Test methods for structural parameters of all plastic multimode optical fibers,” Tech. Rep. JIS C 6862, JIS, Tokyo, Japan (1990).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

J. Arrue, J. Zubia, G. Durana, J. Mateo, and M. Lopez-Amo, “Model for the propagation of pulses and mode scrambling in a real POF with structural imperfections,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 301–308 (Amsterdam (The Netherlands), 2001).

J. Zubia, H. Poisel, C.-A. Bunge, G. Aldabaldetreku, and J. Arrue, “POF Modelling,” in 11th International POF Conference 2002: Proceedings, pp. 221–224 (Tokyo (Japan), 2002).

Mitsubishi Rayon Co., Ltd.: “Eska-Miu,” URL http://www.pofeska.com.

V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, “Production of multilayer polymer optical fibers,” in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications-POF’99, pp. 98–101 (Chiba (Japan), 1999).

K. Irie, Y. Uozu, and T. Yoshimura, “Structure design and analysis of broadband POF,” in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications-POF’01, pp. 73–79 (Amsterdam (The Netherlands), 2001).

D. Marcuse, D. Gloge, and E. A. J. Marcatili, “Guiding Properties of Fibers,” in Optical Fiber Telecommunications, S. E. Miller and A. G. Chynoweth, eds., chap. 3 (Academic Press, Inc., San Diego, California, 1979).

G. Keiser, Optical Fiber Communications (McGraw-Hill, Singapore, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Experimental set-up used to measure coupling losses of MSI-POFs.

Fig. 2.
Fig. 2.

Cross-section photographs of the MSI-POFs and their respective refractive-index profiles.

Fig. 3.
Fig. 3.

Eska-Miu fibre. Experimental near- and far-fields of the transmitting fibre for different source configurations used in the measurements.

Fig. 4.
Fig. 4.

TVER fibre. Experimental near- and far-fields of the transmitting fibre for different source configurations used in the measurements.

Fig. 5.
Fig. 5.

Experimental near- and far-fields of the transmitting fibre with an 8-shaped scrambler used in the measurements for the Eska-Miu and TVER fibres (NAinput =0.1).

Fig. 6.
Fig. 6.

Eska-Miu fibre. Near- and far-fields of the transmitting fibre for different source configurations used in the numerical computer simulations.

Fig. 7.
Fig. 7.

TVER fibre. Near- and far-fields of the transmitting fibre for different source configurations used in the numerical computer simulations.

Fig. 8.
Fig. 8.

Eska-Miu fibre. Coupling loss against normalized longitudinal separation s/Router for various transverse offsets and for different source configurations. Experimental and numerical results. The insets correspond to the results obtained when the source covers the whole input surface of the transmitting fibre. The analytical results denoted by ♦ are shown superimposed on the numerical results obtained with NAinput =0.65.

Fig. 9.
Fig. 9.

TVER fibre. Coupling loss against normalized longitudinal separation s/Router for various transverse offsets and for different source configurations. Experimental and numerical results. The insets correspond to the results obtained when the source covers the whole input surface of the transmitting fibre. The analytical results denoted by ♦ are shown superimposed on the numerical results obtained with NAinput =0.65.

Fig. 10.
Fig. 10.

Coupling loss against normalized longitudinal separation s/Router for various transverse offsets and using an 8-shaped scrambler in the transmitting fibre (NAinput =0.1). Experimental results obtained for the Eska-Miu and TVER fibres.

Fig. 11.
Fig. 11.

Eska-Miu fibre. Coupling loss against normalized transverse offset d/Router for various longitudinal separations and for different source configurations. Experimental and numerical results. The insets correspond to the results obtained when the source covers the whole input surface of the transmitting fibre. The analytical results denoted by ♦ are shown superimposed on the numerical results obtained with NAinput =0.65.

Fig. 12.
Fig. 12.

TVER fibre. Coupling loss against normalized transverse offset d/Router for various longitudinal separations and for different source configurations. Experimental and numerical results. The insets correspond to the results obtained when the source covers the whole input surface of the transmitting fibre. The analytical results denoted by ♦ are shown superimposed on the numerical results obtained with NAinput =0.65.

Fig. 13.
Fig. 13.

Coupling loss against normalized transverse offset d/Router for various longitudinal separations and using an 8-shaped scrambler in the transmitting fibre (NAinput =0.1). Experimental results obtained for the Eska-Miu and TVER fibres.

Fig. 14.
Fig. 14.

Coupling loss against angular misalignment α (in degrees) for various longitudinal separations for an input numerical aperture NAinput =0.65. Experimental and numerical results. The insets correspond to the results obtained when the source covers the whole input surface of the transmitting fibre. The analytical results denoted by ♦ are shown superimposed on the numerical results.

Fig. 15.
Fig. 15.

Coupling loss against angular misalignment α (in degrees) for various transverse offsets for an input numerical aperture NAinput =0.65. Experimental and numerical results. The insets correspond to the results obtained when the source covers the whole input surface of the transmitting fibre.

Tables (3)

Tables Icon

Table 1. Analytical expression of the coupling loss LLS for a longitudinal separation s for MSI fibres. (After Ref. [3].)

Tables Icon

Table 2. Analytical expression of the coupling loss LTO for a transverse offset d for MSI fibres. (After Ref. [3].)

Tables Icon

Table 3. Physical dimensions of the different layers (outer radii in mm).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = { n 1 ; r < ρ 1 , n 2 ; ρ 1 r < ρ 2 , n N ; ρ N 1 r < ρ N , n cl ; r ρ N .
P br = π 2 I 0 n 0 2 i = 1 N ( ρ i 2 ρ i 1 2 ) S i = i = 1 N P i ; S i = n i 2 n cl 2 ,
W i W 1 = P i A i P 1 A 1 = [ ( ρ i 2 ρ i 1 2 ) NA i 2 ] [ π ( ρ i 2 ρ i 1 2 ) ] [ ρ 1 2 NA 1 2 ] [ π ρ 1 2 ] = NA i 2 NA 1 2 .
L AM = 10 log 2 π i = 1 N ( ρ i 2 ρ i 1 2 ) NA i 2 { i = 2 j NA i 2 δ i + NA 1 2 ρ 1 2 [ arccos q 1 q 1 ( 1 q 1 2 ) 1 2 ] } ,
R 2 = r 2 + n 2 sin 2 θ z n 2 n cl 2
R 2 = ( 1 β 2 k 2 n 2 ) n 2 n 2 n cl 2
σ = n sin θ z ( n 2 n cl 2 ) 1 2 ,
R 2 = r 2 + σ 2 .
D 2 = d 2 + n 2 sin 2 α n 2 n cl 2 ,

Metrics