Abstract

We report the demonstration of reflection mode imaging of 100 nm-scale features using 46.9 nm light from a compact capillary-discharge laser. Our imaging system employs a Sc/Si multilayer coated Schwarzschild condenser and a freestanding zone plate objective. The reported results advance the development of practical and readily available surface and nanostructure imaging tools based on the use of compact sources of extreme ultraviolet light.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Garini, B. J. Vermolen, and I. T. Young, �??From micro to nano: recent advances in high-resolution microscopy,�?? Current Opinion in Biotechnology 16, 3-12 (2005).
    [CrossRef] [PubMed]
  2. W. Chao, E. Anderson, G. P. Denbeaux, B. Harteneck, J. A. Liddle, D. L. Olynick, A. L. Pearson, F. Salmassi, C. Y. Song, and D. T. Attwood, �??20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer test structures,�?? Opt. Lett. 28, 2019-2021 (2003).
    [CrossRef] [PubMed]
  3. M. Weiland, Ch. Spielmann, U. Kleineberg, Th. Westerwalbesloh, U. Heinzmann, and T. Wilhein, �??Towards time-resolved soft X-ray microscopy using pulsed fs-high-harmonic radiation,�?? Ultramicoscopy 102, 93-100 (2005).
    [CrossRef]
  4. A. R. Libertun, X. Zhang, A. Paul, D. Raymondson, E. Gershgoren, E. Gagnon, S. Backus, M. M. Murnane, H. C. Kapteyn, R. A. Bartels, Y. Liu, and D. T. Attwood, �??High-resolution EUV imaging using high harmonic generation,�?? Conference on Lasers and Electro-Optics Technical Digest, Article JMD4 (2004).
  5. J. A.Trail and R. L. Byer, �??Compact scanning soft-x-ray microscope using a laser-produced plasma source and normal-incidence multilayer mirrors,�?? Opt. Lett. 14, 539-541 (1989).
    [CrossRef] [PubMed]
  6. I. A. Artioukov, A. V. Vinogradov, V. E. Asadchikov, Y. S. Kasyanov, R. V. Serov, A. I. Fedorenko, V. V. Kondratenko, and S. Y. Yulin, �??Schwartzschild soft-x-ray microscope for imaging of nonradiating objects,�?? Opt. Lett. 20, 2451-2453 (1995).
    [CrossRef] [PubMed]
  7. G. Vaschenko, F. Brizuela, C. Brewer, M. Grisham, H. Mancini, C. S. Menoni, M. Marconi, and J. J. Rocca, �??Nano-imaging with a compact extreme ultraviolet laser,�?? Opt. Lett. in press (2005).
  8. D. S. DiCicco, D. Kim, R. Rosser, and S. Suckewer, �??First stage in the development of a soft-x-ray reflection imaging microscope in the Schwarzschild configuration using a soft-x-ray laser at 18.2 nm,�?? Opt. Lett. 17, 157-159 (1992).
    [CrossRef] [PubMed]
  9. T. Haga, H. Kinoshita, K. Hamamoto, S. Takada, N. Kazui, S. Kakunai, H. Tsubakino, and T. Watanabe, �??Evaluation of finished extreme ultraviolet lithography (EUVL) masks using a EUV microscope,�?? Jpn. J. Appl. Phys. 42, 3771-3775 (2003).
    [CrossRef]
  10. P. P. Naulleau, "Advanced EUV Lithography Capabilities at Lawrence Berkeley National Laboratory's Advanced Light Source," Proceedings, SEMI Technology Symposium 2004; P. P. Naulleau, K. A. Goldberg, E. H. Anderson, P. Denham, B. Hoef, K. Jackson, A. Morlens, and S. Rekawa, �??EUV microexposures at the ALS using the 0.3-NA MET projection optics,�?? Microlithography 2005, paper [5751-04]. i.b. Procc. SPIE 5374, 881-91 (2004).
    [CrossRef]
  11. Yu. A. Uspenskii, V. E. Lavashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Yu. P. Pershin, E. N. Zubarev, and V. Yu. Fedotov, �??High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50 nm,�?? Opt. Lett. 23, 771-773 (1998).
    [CrossRef]
  12. B. R. Benware, C. D. Macchietto, C. H. Moreno, and J. J. Rocca, �??Demonstration of a high average power tabletop soft x-ray laser,�?? Phys. Rev. Lett. 81, 5804-5807 (1998).
    [CrossRef]
  13. Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, �??Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,�?? Phys. Rev. A 63, 033802 (2001).
    [CrossRef]
  14. Y. Wang, M.A. Larotonda, B.M. Luther, D. Alessi, M. Berrill, V.N. Shlyaptsev, and J.J. Rocca, �??Demonstration of saturated high repetition rate tabletop soft x-ray lasers at wavelength down to 13.9 nm�??, to be published, (2005).

Conference on Lasers and Electro-Optics

A. R. Libertun, X. Zhang, A. Paul, D. Raymondson, E. Gershgoren, E. Gagnon, S. Backus, M. M. Murnane, H. C. Kapteyn, R. A. Bartels, Y. Liu, and D. T. Attwood, �??High-resolution EUV imaging using high harmonic generation,�?? Conference on Lasers and Electro-Optics Technical Digest, Article JMD4 (2004).

Current Opinion in Biotechnology

Y. Garini, B. J. Vermolen, and I. T. Young, �??From micro to nano: recent advances in high-resolution microscopy,�?? Current Opinion in Biotechnology 16, 3-12 (2005).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys.

T. Haga, H. Kinoshita, K. Hamamoto, S. Takada, N. Kazui, S. Kakunai, H. Tsubakino, and T. Watanabe, �??Evaluation of finished extreme ultraviolet lithography (EUVL) masks using a EUV microscope,�?? Jpn. J. Appl. Phys. 42, 3771-3775 (2003).
[CrossRef]

Opt. Lett.

W. Chao, E. Anderson, G. P. Denbeaux, B. Harteneck, J. A. Liddle, D. L. Olynick, A. L. Pearson, F. Salmassi, C. Y. Song, and D. T. Attwood, �??20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer test structures,�?? Opt. Lett. 28, 2019-2021 (2003).
[CrossRef] [PubMed]

J. A.Trail and R. L. Byer, �??Compact scanning soft-x-ray microscope using a laser-produced plasma source and normal-incidence multilayer mirrors,�?? Opt. Lett. 14, 539-541 (1989).
[CrossRef] [PubMed]

I. A. Artioukov, A. V. Vinogradov, V. E. Asadchikov, Y. S. Kasyanov, R. V. Serov, A. I. Fedorenko, V. V. Kondratenko, and S. Y. Yulin, �??Schwartzschild soft-x-ray microscope for imaging of nonradiating objects,�?? Opt. Lett. 20, 2451-2453 (1995).
[CrossRef] [PubMed]

G. Vaschenko, F. Brizuela, C. Brewer, M. Grisham, H. Mancini, C. S. Menoni, M. Marconi, and J. J. Rocca, �??Nano-imaging with a compact extreme ultraviolet laser,�?? Opt. Lett. in press (2005).

D. S. DiCicco, D. Kim, R. Rosser, and S. Suckewer, �??First stage in the development of a soft-x-ray reflection imaging microscope in the Schwarzschild configuration using a soft-x-ray laser at 18.2 nm,�?? Opt. Lett. 17, 157-159 (1992).
[CrossRef] [PubMed]

Yu. A. Uspenskii, V. E. Lavashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Yu. P. Pershin, E. N. Zubarev, and V. Yu. Fedotov, �??High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50 nm,�?? Opt. Lett. 23, 771-773 (1998).
[CrossRef]

Phys. Rev. A

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, �??Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,�?? Phys. Rev. A 63, 033802 (2001).
[CrossRef]

Phys. Rev. Lett.

B. R. Benware, C. D. Macchietto, C. H. Moreno, and J. J. Rocca, �??Demonstration of a high average power tabletop soft x-ray laser,�?? Phys. Rev. Lett. 81, 5804-5807 (1998).
[CrossRef]

SEMI Technology Symposium

P. P. Naulleau, "Advanced EUV Lithography Capabilities at Lawrence Berkeley National Laboratory's Advanced Light Source," Proceedings, SEMI Technology Symposium 2004; P. P. Naulleau, K. A. Goldberg, E. H. Anderson, P. Denham, B. Hoef, K. Jackson, A. Morlens, and S. Rekawa, �??EUV microexposures at the ALS using the 0.3-NA MET projection optics,�?? Microlithography 2005, paper [5751-04]. i.b. Procc. SPIE 5374, 881-91 (2004).
[CrossRef]

Ultramicoscopy

M. Weiland, Ch. Spielmann, U. Kleineberg, Th. Westerwalbesloh, U. Heinzmann, and T. Wilhein, �??Towards time-resolved soft X-ray microscopy using pulsed fs-high-harmonic radiation,�?? Ultramicoscopy 102, 93-100 (2005).
[CrossRef]

Other

Y. Wang, M.A. Larotonda, B.M. Luther, D. Alessi, M. Berrill, V.N. Shlyaptsev, and J.J. Rocca, �??Demonstration of saturated high repetition rate tabletop soft x-ray lasers at wavelength down to 13.9 nm�??, to be published, (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the compact extreme ultraviolet microscope.

Fig. 2.
Fig. 2.

EUV microscope image of a Ni test pattern image obtained at 45° with a magnification of 480×. For this image 70 laser shots were used with an exposure time of 70 seconds. The inner apertures are ~100 nm in size with ~800 nm separation.

Fig. 3.
Fig. 3.

(a) EUV microscope image of the silicon wafer with 100 nm polysilicon lines separated by 800 nm spaces (top right) and 250 nm half-period lines with equal lines and spaces. This image was obtained with an illumination angle of 45° with 200 nm outer zone objective using a 20 second exposure (20 laser shots) and a magnification of 480×; (b) enlarged view of the 250 nm lines/spaces.

Fig. 4.
Fig. 4.

Single shot EUV microscope images of a silicon wafer with polysilicon lines obtained with (a) 27 cm and (b) 18 cm discharge capillary lengths. Shorter capillary length results in reduced coherence and improved image quality. The images were taken at 45° reflection angle with the 200 nm outer zone width objective zone plate.

Metrics