Abstract

Amplification and simultaneous phase regeneration of DPSK signals is demonstrated using a phase-sensitive amplifier. Phase-sensitive gain is achieved in a Sagnac fiber interferometer comprised of non-polarization maintaining, highly nonlinear fiber operating in the un-depleted pump regime. Both the pump and signal are RZ-DPSK pulse trains. The amplifier is capable of producing greater than 13 dB of phase-sensitive gain for an average pumping power of 100 mW, and easily reduces the BER of the regenerated DPSK signal by two orders of magnitude compared to the un-regenerated signal, corresponding to a negative power penalty of 2 dB. Careful optimization of the regenerator reveals much stronger BER improvement.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Kim and A. H. Gnauck, �??Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,�?? IEEE Photon. Technol. Lett. 15, 320-322, (2003).
    [CrossRef]
  2. C. Pare, A. Villeneuve, P. A. Belanger and N. J. Doran, �??Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,�?? Opt. Lett. 21, 459-461, (1996).
    [CrossRef] [PubMed]
  3. I. R. Gabitov and P. M. Lushnikov, �??Nonlinearity management in a dispersion managed system,�?? Opt. Lett. 27, 113-115, (2002).
    [CrossRef]
  4. S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter and P. M. Krummrich, �??Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,�?? in proc. OFC, OTh05, Anaheim CA, 2005.
  5. X. Liu, X. Wei, R. E. Slusher and C. J. McKinstrie, �??Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,�?? Opt. Lett. 27, 1616-1618, (2002).
    [CrossRef]
  6. C. Xu and X. Liu, �??Post-nonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,�?? Opt. Lett. 27, 1619-1621 (2002).
    [CrossRef]
  7. A. Striegler and B. Schmauss, �??All-Optical DPSK Signal Regeneration Based on Cross-Phase Modulation,�?? IEEE Photon. Tech. Lett. 16, 1083-1085 (2004)
    [CrossRef]
  8. A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, �??NOLM-Based RZ-DPSK Signal Regeneration,�?? IEEE Photon. Technol. Lett. 17, 639-641 (2005).
    [CrossRef]
  9. M. Matsumoto, �??Regeneration of RZ-DPSK Signals by Fiber-Based All-Optical Regenerators,�?? IEEE Photon. Technol. Lett. 17, 1055-1057 (2005).
    [CrossRef]
  10. P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri and P. Kumar, �??SOA-based regenerative amplification of phase noise degraded DPSK signals,�?? in proc. OFC, PDP34, Anaheim CA, 2005.
  11. M. E. Marhic, C. H. Hsia and J. M. Jeong, �??Optical Amplification in a nonlinear fiber interferometer,�?? Electron. Lett. 27, 210-211 (1991).
    [CrossRef]
  12. W. Imajuku, A. Takada and Y. Yamabayashi, �??Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,�?? Electron. Lett. 36, 63-64 (2000).
    [CrossRef]
  13. A. Takada and W. Imajuku, �??Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,�?? Electron. Lett. 32, 677-679 (1996).
    [CrossRef]
  14. G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, �??All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,�?? IEEE Photon. Technol. Lett. 9, 1020-1022 (1997).
    [CrossRef]
  15. K. Croussore, C. Kim and G. Li, �??All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,�?? Opt. Lett. 28, 2357�??2359 (2004).
    [CrossRef]
  16. Norimatsu, S.; Iwashita, K.; Noguchi, K, �??An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,�?? IEEE Photon. Technol. Lett. 4 (7), 765-767 (1992).
    [CrossRef]

Electron. Lett.

M. E. Marhic, C. H. Hsia and J. M. Jeong, �??Optical Amplification in a nonlinear fiber interferometer,�?? Electron. Lett. 27, 210-211 (1991).
[CrossRef]

W. Imajuku, A. Takada and Y. Yamabayashi, �??Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,�?? Electron. Lett. 36, 63-64 (2000).
[CrossRef]

A. Takada and W. Imajuku, �??Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,�?? Electron. Lett. 32, 677-679 (1996).
[CrossRef]

IEEE Photon. Tech. Lett.

A. Striegler and B. Schmauss, �??All-Optical DPSK Signal Regeneration Based on Cross-Phase Modulation,�?? IEEE Photon. Tech. Lett. 16, 1083-1085 (2004)
[CrossRef]

IEEE Photon. Technol. Lett.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs and B. Schmauss, �??NOLM-Based RZ-DPSK Signal Regeneration,�?? IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

M. Matsumoto, �??Regeneration of RZ-DPSK Signals by Fiber-Based All-Optical Regenerators,�?? IEEE Photon. Technol. Lett. 17, 1055-1057 (2005).
[CrossRef]

H. Kim and A. H. Gnauck, �??Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,�?? IEEE Photon. Technol. Lett. 15, 320-322, (2003).
[CrossRef]

G. D. Bartolini, D. K. Serkland, P. Kumar and W. L. Kath, �??All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,�?? IEEE Photon. Technol. Lett. 9, 1020-1022 (1997).
[CrossRef]

Norimatsu, S.; Iwashita, K.; Noguchi, K, �??An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,�?? IEEE Photon. Technol. Lett. 4 (7), 765-767 (1992).
[CrossRef]

OFC 2005

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter and P. M. Krummrich, �??Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,�?? in proc. OFC, OTh05, Anaheim CA, 2005.

OFC, 2005

P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri and P. Kumar, �??SOA-based regenerative amplification of phase noise degraded DPSK signals,�?? in proc. OFC, PDP34, Anaheim CA, 2005.

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

PSA-based DPSK regenerator. RZ-DPSK: pulse carver and phase modulator driven by a 10 Gb/s PRBS signal. Ep: Pump field. Es: Signal field. FS, DL: Fiber stretcher, delay line. PC: polarization controller. VOA: variable optical attenuator. OC: optical circulator. HNLF: non-polarization maintaining, highly nonlinear fiber. PD: narrow bandwidth photodetector. PM: optical phase modulator. Synth.: RF synthesizer. PSA: phase-sensitive amplifier, comprising the 3-dB coupler and fiber loop.

Fig. 2.
Fig. 2.

Eye diagrams after balanced detection. (a) RZ-DPSK data without added phase noise. (b) Data with added phase noise, before regeneration. (c) After regeneration.

Fig. 3.
Fig. 3.

BER measurements for back-to-back transmission with degraded phase (open circles) and after phase regeneration (filled circles). Negative power penalty of 2 dB is demonstrated and BER improvement averages two orders of magnitude over the range of the measurement.

Metrics