Abstract

Amplification and simultaneous phase regeneration of DPSK signals is demonstrated using a phase-sensitive amplifier. Phase-sensitive gain is achieved in a Sagnac fiber interferometer comprised of non-polarization maintaining, highly nonlinear fiber operating in the un-depleted pump regime. Both the pump and signal are RZ-DPSK pulse trains. The amplifier is capable of producing greater than 13 dB of phase-sensitive gain for an average pumping power of 100 mW, and easily reduces the BER of the regenerated DPSK signal by two orders of magnitude compared to the un-regenerated signal, corresponding to a negative power penalty of 2 dB. Careful optimization of the regenerator reveals much stronger BER improvement.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification

Kevin Croussore, Cheolhwan Kim, and Guifang Li
Opt. Lett. 29(20) 2357-2359 (2004)

Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier

Kevin Croussore, Inwoong Kim, Cheolhwan Kim, Yan Han, and Guifang Li
Opt. Express 14(6) 2085-2094 (2006)

Convergence of phase noise in DPSK transmission systems by novel phase noise averagers

Chia Chien Wei and Jason (Jyehong) Chen
Opt. Express 14(21) 9584-9593 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett. 15, 320–322, (2003).
    [Crossref]
  2. C. Pare, A. Villeneuve, P. A. Belanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21, 459–461, (1996).
    [Crossref] [PubMed]
  3. I. R. Gabitov and P. M. Lushnikov, “Nonlinearity management in a dispersion managed system,” Opt. Lett. 27, 113–115, (2002).
    [Crossref]
  4. S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.
  5. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, “Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,” Opt. Lett. 27, 1616–1618, (2002).
    [Crossref]
  6. C. Xu and X. Liu, “Post-nonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27, 1619–1621 (2002).
    [Crossref]
  7. A. Striegler and B. Schmauss, “All-Optical DPSK Signal Regeneration Based on Cross-Phase Modulation,” IEEE Photon. Tech. Lett. 16, 1083–1085 (2004)
    [Crossref]
  8. A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
    [Crossref]
  9. M. Matsumoto, “Regeneration of RZ-DPSK Signals by Fiber-Based All-Optical Regenerators,” IEEE Photon. Technol. Lett. 17, 1055–1057 (2005).
    [Crossref]
  10. P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase noise degraded DPSK signals,” in proc. OFC, PDP34, Anaheim CA, 2005.
  11. M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
    [Crossref]
  12. W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
    [Crossref]
  13. A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
    [Crossref]
  14. G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,” IEEE Photon. Technol. Lett. 9, 10200–1022 (1997).
    [Crossref]
  15. K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 28, 2357–2359 (2004).
    [Crossref]
  16. S. Norimatsu, K. Iwashita, and K Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett. 4 (7), 765–767 (1992).
    [Crossref]

2005 (2)

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

M. Matsumoto, “Regeneration of RZ-DPSK Signals by Fiber-Based All-Optical Regenerators,” IEEE Photon. Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

2004 (2)

A. Striegler and B. Schmauss, “All-Optical DPSK Signal Regeneration Based on Cross-Phase Modulation,” IEEE Photon. Tech. Lett. 16, 1083–1085 (2004)
[Crossref]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 28, 2357–2359 (2004).
[Crossref]

2003 (1)

H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett. 15, 320–322, (2003).
[Crossref]

2002 (3)

2000 (1)

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

1997 (1)

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,” IEEE Photon. Technol. Lett. 9, 10200–1022 (1997).
[Crossref]

1996 (2)

A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
[Crossref]

C. Pare, A. Villeneuve, P. A. Belanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21, 459–461, (1996).
[Crossref] [PubMed]

1992 (1)

S. Norimatsu, K. Iwashita, and K Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

1991 (1)

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

Bartolini, G. D.

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,” IEEE Photon. Technol. Lett. 9, 10200–1022 (1997).
[Crossref]

Belanger, P. A.

Croussore, K.

Cvecek, K.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

de Waardt, H.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.

Devgan, P. S.

P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase noise degraded DPSK signals,” in proc. OFC, PDP34, Anaheim CA, 2005.

Doran, N. J.

Gabitov, I. R.

Gnauck, A. H.

H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett. 15, 320–322, (2003).
[Crossref]

Grigoryan, V. S.

P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase noise degraded DPSK signals,” in proc. OFC, PDP34, Anaheim CA, 2005.

Hsia, C. H.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

Imajuku, W.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
[Crossref]

Iwashita, K.

S. Norimatsu, K. Iwashita, and K Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

Jansen, S. L.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.

Jeong, J. M.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

Kath, W. L.

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,” IEEE Photon. Technol. Lett. 9, 10200–1022 (1997).
[Crossref]

Khoe, G. D.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.

Kim, C.

Kim, H.

H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett. 15, 320–322, (2003).
[Crossref]

Krummrich, P. M.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.

Kumar, P.

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,” IEEE Photon. Technol. Lett. 9, 10200–1022 (1997).
[Crossref]

P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase noise degraded DPSK signals,” in proc. OFC, PDP34, Anaheim CA, 2005.

Lasri, J.

P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase noise degraded DPSK signals,” in proc. OFC, PDP34, Anaheim CA, 2005.

Leuchs, G.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

Li, G.

Liu, X.

Lushnikov, P. M.

Marhic, M. E.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

Matsumoto, M.

M. Matsumoto, “Regeneration of RZ-DPSK Signals by Fiber-Based All-Optical Regenerators,” IEEE Photon. Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

McKinstrie, C. J.

Meissner, M.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

Monsalve, C. C.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.

Noguchi, K

S. Norimatsu, K. Iwashita, and K Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

Norimatsu, S.

S. Norimatsu, K. Iwashita, and K Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

Pare, C.

Schmauss, B.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

A. Striegler and B. Schmauss, “All-Optical DPSK Signal Regeneration Based on Cross-Phase Modulation,” IEEE Photon. Tech. Lett. 16, 1083–1085 (2004)
[Crossref]

Serkland, D. K.

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,” IEEE Photon. Technol. Lett. 9, 10200–1022 (1997).
[Crossref]

Shin, M.

P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase noise degraded DPSK signals,” in proc. OFC, PDP34, Anaheim CA, 2005.

Slusher, R. E.

Spalter, S.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.

Sponsel, K.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

Striegler, A.

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

A. Striegler and B. Schmauss, “All-Optical DPSK Signal Regeneration Based on Cross-Phase Modulation,” IEEE Photon. Tech. Lett. 16, 1083–1085 (2004)
[Crossref]

Takada, A.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
[Crossref]

van den Borne, D.

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.

Villeneuve, A.

Wei, X.

Xu, C.

Yamabayashi, Y.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

Electron. Lett. (3)

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical Amplification in a nonlinear fiber interferometer,” Electron. Lett. 27, 210–211 (1991).
[Crossref]

W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett. 36, 63–64 (2000).
[Crossref]

A. Takada and W. Imajuku, “Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996).
[Crossref]

IEEE Photon. Tech. Lett. (1)

A. Striegler and B. Schmauss, “All-Optical DPSK Signal Regeneration Based on Cross-Phase Modulation,” IEEE Photon. Tech. Lett. 16, 1083–1085 (2004)
[Crossref]

IEEE Photon. Technol. Lett. (5)

A. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005).
[Crossref]

M. Matsumoto, “Regeneration of RZ-DPSK Signals by Fiber-Based All-Optical Regenerators,” IEEE Photon. Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett. 15, 320–322, (2003).
[Crossref]

G. D. Bartolini, D. K. Serkland, P. Kumar, and W. L. Kath, “All-Optical Storage of a Picosecond-Pulse Packet Using Parametric Amplification,” IEEE Photon. Technol. Lett. 9, 10200–1022 (1997).
[Crossref]

S. Norimatsu, K. Iwashita, and K Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett. 4 (7), 765–767 (1992).
[Crossref]

Opt. Lett. (5)

Other (2)

S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, C. C. Monsalve, S. Spalter, and P. M. Krummrich, “Reduction of nonlinear phase noise by mid-link spectral inversion in a DPSK based transmission system,” in proc. OFC, OTh05, Anaheim CA, 2005.

P. S. Devgan, M. Shin, V. S. Grigoryan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase noise degraded DPSK signals,” in proc. OFC, PDP34, Anaheim CA, 2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

PSA-based DPSK regenerator. RZ-DPSK: pulse carver and phase modulator driven by a 10 Gb/s PRBS signal. Ep: Pump field. Es: Signal field. FS, DL: Fiber stretcher, delay line. PC: polarization controller. VOA: variable optical attenuator. OC: optical circulator. HNLF: non-polarization maintaining, highly nonlinear fiber. PD: narrow bandwidth photodetector. PM: optical phase modulator. Synth.: RF synthesizer. PSA: phase-sensitive amplifier, comprising the 3-dB coupler and fiber loop.

Fig. 2.
Fig. 2.

Eye diagrams after balanced detection. (a) RZ-DPSK data without added phase noise. (b) Data with added phase noise, before regeneration. (c) After regeneration.

Fig. 3.
Fig. 3.

BER measurements for back-to-back transmission with degraded phase (open circles) and after phase regeneration (filled circles). Negative power penalty of 2 dB is demonstrated and BER improvement averages two orders of magnitude over the range of the measurement.

Metrics