Abstract

We demonstrate frequency tuning of enhanced THz radiation transmitted through a two-dimensional metallic hole array (2D-MHA) by controlling the index of refraction of the medium filling the holes and adjacent to the 2D-MHA on one side. The medium is a nematic liquid crystal (NLC) and its index of refraction is varied using magnetically controlled birefringence of the NLC. With the NLC, the peak transmission frequency of the 2D-MHA shift to the red by 0.112 THz and can be tuned from 0.193 to 0.188 THz. The peak transmittance is as high as 70% or an enhancement of 2.42 times, considering the porosity of the 2D-MHA. As a tunable THz filter, this device exhibits a continuous tuning range of 4.7 GHz, a low insertion loss of 2.35 to 1.55 dB and a quality factor of ~4–5.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 351, 667, 1998.
    [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, �??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 58, 6779 (1998).
    [CrossRef]
  3. E. Popov, M. Nevière, S. Enoch, and R. Reinisc, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B 62,16100 ( 2000).
    [CrossRef]
  4. W. L Barnes, A. Dereux, and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature (London) 424, 824 (2003).
    [CrossRef]
  5. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin and T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569 (2000).
    [CrossRef]
  6. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, �??Evanescently coupled resonance in surface plasmon enhanced transmission,�?? Opt. Commun. 200, 1 (2001).
    [CrossRef]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, �??Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,�?? Phys. Rev. Lett. 86, 1114 (2001).
    [CrossRef] [PubMed]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  9. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, �??Surface-plasmon-enhanced transmission through hole arrays in Cr films,�?? J. Opt. Soc. Am. B 16, 1743 (1999).
    [CrossRef]
  10. A. Degiron, H. J. Lezec, W. L. Barnes, T. W. Ebbesen, �??Effects of hole depth on enhanced light transmission through subwavelength hole arrays,�?? Appl. Phys. Lett. 81, 4327 (2002).
    [CrossRef]
  11. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, �??Control of optical transmission through metals perforated with subwavelength hole arrays,�?? Opt. Lett. 24, 256 (1999).
    [CrossRef]
  12. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  13. C. Winnewisser, F. T. Lewen, M.Schall, M. Walther, and H. Helm, IEEE Trans. �??Characterization and Application of Dichroic Filters in the 0.1�??3-THz Region,�?? Microwave Theory Tech. 48, 744 (2000).
    [CrossRef]
  14. H. Cao and A. Nahata, �??Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,�?? Opt. Express 12, 1004 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004</a>
    [CrossRef] [PubMed]
  15. D. Qu, D. Grischkowsky, and W. Zhang, �??Terahertz transmission properties of thin, subwavelength metallic hole arrays,�?? Opt. Lett. 29, 896 (2004).
    [CrossRef] [PubMed]
  16. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, �??Enhanced transmission of THz radiation through subwavelength holes,�?? Phys. Rev. B 68, 201306 (2004).
    [CrossRef]
  17. L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, �??Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations ,�?? Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  18. J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, �??Mimicking Surface Plasmons with Structured Surfaces,�?? Science, 305, 847 (2004).
    [CrossRef] [PubMed]
  19. F. Miyamaru and M. Hangyo, �??Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,�?? Phys. Rev. B71, 165408 (2005).
  20. J. Gómez Rivas, P. Haring Bolivar, H. Kurz , �??Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures,�?? Opt. Lett. 29, 1680 (2004).
    [CrossRef] [PubMed]
  21. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, �??Transmittance of a tunable filter at terahertz frequencies,�?? Appl. Phys. Lett. 85, 5173 (2004).
    [CrossRef]
  22. H. Némec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, M. T. Sebastin, �??Highly tunable photonic crystal filter for the terahertz range,�?? Opt. Lett. 30, 549 (2005).
    [CrossRef] [PubMed]
  23. Tsong-Ru Tsai, Chao-Yuan Chen, Ci-Ling Pan, Ru-Pin Pan, and Xi Cheng Zhang, �??Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,�?? Appl. Opt. 42, 2372, 2003.
    [CrossRef] [PubMed]
  24. Ru-Pin Pan, Tsong-Ru Tsai, Chiunghan Wang, Chao-Yuan Chen, and Ci-Ling Pan, �??The Refractive Indices of Nematic Liquid Crystal 4�??-n-pentyl-4-cyanobiphenyl in the THz Frequency Range,�?? Mol. Cryst. Liq. Crystl., 409 (2004).
    [CrossRef]
  25. Chao-Yuan Chen, Tsong-Ru Tsai, Ci-Ling Pan, and Ru-Pin Pan, �??Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,�?? Appl. Phys. Lett. 83, 4497, 2003.
    [CrossRef]
  26. Chao-Yuan Chen, Cho-Fan Hsieh, Yea-Feng Lin, Ru-Pin Pan, and Ci-Ling Pan, �??Magnetically tunable room-temperature 2ð liquid crystal terahertz phase shifter,�?? Opt. Express, 12, 2625 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2625"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2625</a>
    [CrossRef] [PubMed]
  27. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, J. Appl. �??Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,�?? J. Appl. Phys. 90, 837 (2001).
    [CrossRef]
  28. F. Miyamaru, M. Hangyo, �??Finite size effect of transmission property for metal hole arrays in subterahertz region,�?? Appl. Phys. Lett. 84, 2742 (2004).
    [CrossRef]
  29. Masaki Tanaka, Fumiaki Miyamaru, Masanori Hangyo, Takeshi Tanaka, Masamichi Akazawa and Eiichi Sano, �??Effect of thin dielectric layer on terahertz transmission characteristics for metal hole arrays,�?? Opt Lett., to be published. 2005.
  30. C. Weil, S. Muller, R. Scheele, P. Best, g. Lussem, R. Jakoby, Electron. �??Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,�?? Electron. Lett. 39, 1732 (2003).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Chao-Yuan Chen, Tsong-Ru Tsai, Ci-Ling Pan, and Ru-Pin Pan, �??Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,�?? Appl. Phys. Lett. 83, 4497, 2003.
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin and T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569 (2000).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, T. W. Ebbesen, �??Effects of hole depth on enhanced light transmission through subwavelength hole arrays,�?? Appl. Phys. Lett. 81, 4327 (2002).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, �??Transmittance of a tunable filter at terahertz frequencies,�?? Appl. Phys. Lett. 85, 5173 (2004).
[CrossRef]

F. Miyamaru, M. Hangyo, �??Finite size effect of transmission property for metal hole arrays in subterahertz region,�?? Appl. Phys. Lett. 84, 2742 (2004).
[CrossRef]

Electron. Lett.

C. Weil, S. Muller, R. Scheele, P. Best, g. Lussem, R. Jakoby, Electron. �??Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,�?? Electron. Lett. 39, 1732 (2003).
[CrossRef]

J. Appl. Phys.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, J. Appl. �??Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies,�?? J. Appl. Phys. 90, 837 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Microwave Theory Tech.

C. Winnewisser, F. T. Lewen, M.Schall, M. Walther, and H. Helm, IEEE Trans. �??Characterization and Application of Dichroic Filters in the 0.1�??3-THz Region,�?? Microwave Theory Tech. 48, 744 (2000).
[CrossRef]

Mol. Cryst. Liq. Crystl.

Ru-Pin Pan, Tsong-Ru Tsai, Chiunghan Wang, Chao-Yuan Chen, and Ci-Ling Pan, �??The Refractive Indices of Nematic Liquid Crystal 4�??-n-pentyl-4-cyanobiphenyl in the THz Frequency Range,�?? Mol. Cryst. Liq. Crystl., 409 (2004).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature (London) 351, 667, 1998.
[CrossRef]

W. L Barnes, A. Dereux, and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature (London) 424, 824 (2003).
[CrossRef]

Opt Lett.

Masaki Tanaka, Fumiaki Miyamaru, Masanori Hangyo, Takeshi Tanaka, Masamichi Akazawa and Eiichi Sano, �??Effect of thin dielectric layer on terahertz transmission characteristics for metal hole arrays,�?? Opt Lett., to be published. 2005.

Opt. Commun.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, �??Evanescently coupled resonance in surface plasmon enhanced transmission,�?? Opt. Commun. 200, 1 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, �??Enhanced transmission of THz radiation through subwavelength holes,�?? Phys. Rev. B 68, 201306 (2004).
[CrossRef]

F. Miyamaru and M. Hangyo, �??Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,�?? Phys. Rev. B71, 165408 (2005).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, �??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 58, 6779 (1998).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisc, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B 62,16100 ( 2000).
[CrossRef]

Phys. Rev. Lett.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, �??Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations ,�?? Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, �??Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,�?? Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Sciences

J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, �??Mimicking Surface Plasmons with Structured Surfaces,�?? Science, 305, 847 (2004).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1.

Experimental setup. The inset shows construction of the 2D-MHA with a nematic liquid crystal, (NLC) 5CB infiltrated and as the substrate on one side.

Fig. 2.
Fig. 2.

Transmittance of the 2D-MHA sample before machining (thickness t=0.5 mm, black trace), after machining into a box-line structure (t=0.35 mm, red trace), boxed MHA with front and back Mylar sheets attached (blue trace), LC-filled MHA for o-ray (purple trace) and LC-filled MHA for e-ray (green trace).

Fig. 3.
Fig. 3.

The transmitted THz temporal waveforms of the tunable 2D-MHA sample with the 5CB layer aligned at several magnetic inclination angles θ (θ=0°, 15°, 30°, 45° and 55°) to the polarization direction of the THz wave. The relative time delay is clearly shown in the inset. The waveform of the incident or reference THz pulse (reduced by a factor of four) is also shown.

Fig. 4.
Fig. 4.

A close-up of the power spectra of THz signals transmitted through this device at various magnetic inclination angles.

Fig. 5.
Fig. 5.

The experimentally observed shift of the peak frequencies from Fig. 3(a) and the theoretical estimates are plotted as a function of the inverse of the effective index of refraction.

Fig.6.
Fig.6.

The peak transmittance of the 2D-MHA is plotted as a function of the inverse of the effective index of refraction of the LC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν R = ν spp = k in + G c o 2 π ε m + ε d ε m ε d ,
ν R = ν spp ν diff n d ,
n d = { [ sin 2 ( θ ) n o 2 + cos 2 ( θ ) n e 2 ] 1 2 } ,

Metrics