Abstract

The velocity distributions of 250nm diameter gold nanospheres trapped in the evanescent fields of optical waveguides are studied. The automated analysis of a large number of particles and temporal frames is described. It is used to show that the envelope of the particles�?? speed follows the mode intensity profile of the evanescent field along a length of the waveguide and across its width. Modal beating in a dual-moded waveguide is mapped by analysis of nanoparticle distributions above the waveguide. A modal power of _150mW at l=1066nm in a Cs+ ion-exchanged monomode waveguide results in speeds of up to 500µm/s.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. K. Grujic, O.G. Hellesø, J.P. Hole and J.S. Wilkinson, �??Sorting of polystyrene microspheres using a Y-branched optical waveguide,�?? Opt. Express 13, 1�??7 (2005).
    [CrossRef]
  2. K. Grujic, O.G. Hellesø, J.S. Wilkinson and J.P. Hole, �??Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,�?? Opt. Commun. 239, 227�??235 (2004).
    [CrossRef]
  3. S. Kawata and T. Tani, �??Optically driven Mie particles in an evanescent field along a channeled waveguide,�?? Opt. Lett. 21, 1768�??1770 (1996).
  4. L.N. Ng, M.N. Zervas, J.S.Wilkinson and B.J. Luff, �??Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,�?? Appl. Phys. Lett. 76, 1993�??1995 (2000).
    [CrossRef]
  5. L.N. Ng, B.J. Luff, M.N. Zervas and J.S. Wilkinson, �??Propulsion of gold nanoparticles on optical waveguides,�?? Opt. Commun. 208, 117�??124 (2002).
    [CrossRef]
  6. T. Tanaka and S. Yamamoto, �??Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,�?? Appl. Phys. Lett. 77, 3131�??3133 (2000).
    [CrossRef]
  7. T. Tanaka and S. Yamamoto, �??Optically induced meandering Mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,�?? Japanese Journal of Applied Physics Part 2-Letters 41, L260�??L262 (2002).
  8. A. Ashkin, J.M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared-laser beams,�?? Nature (London) 330, 769�??771 (1987).
    [CrossRef]
  9. M. Moskovits, �??Surface-enhanced spectroscopy,�??. Rev. Mod. Phys. 57, 783�??826 (1985).
    [CrossRef]
  10. S. Kawata and T. Sugiura, �??Movement of micrometer-sized particles in the evanesceent field of a laser-beam,�?? Opt. Lett. 17, 772�??774 (1992).
  11. R.J. Oetama and J.Y. Walz, �??Translation of colloidal particles next to a flat plate using evanescent waves,�?? Colloids and Surfaces a-Physicochemical and Engineering Aspects 211, 179�??195 (2002).
  12. P.B. Johnson and R.W. Christy, �??Optical Constants of Noble Metals,�?? Phys. Rev. B 6, 4370�??4379 (1972).
    [CrossRef]
  13. K. Svoboda and S.M. Block, �??Optical trapping of metallic Rayleigh particles,�?? Opt. Lett. 19, 930�??932 (1994).
  14. H.J. Hagemann,W. Gudat, and C. Kunz, �??Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,�?? DESY Rep. SR-74/7 Hamburg, Germany, (1974)
  15. D.W. Lynch and W.R. Hunter, �??Optical properties of metals and semiconductors,�?? in Handbook of optical constants of solids, E.D. Palik, ed., (Academic Press, Orlando, 1985), pp. 275�??367.

Appl. Phys. Lett.

T. Tanaka and S. Yamamoto, �??Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,�?? Appl. Phys. Lett. 77, 3131�??3133 (2000).
[CrossRef]

L.N. Ng, M.N. Zervas, J.S.Wilkinson and B.J. Luff, �??Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,�?? Appl. Phys. Lett. 76, 1993�??1995 (2000).
[CrossRef]

Collids Surf. A

R.J. Oetama and J.Y. Walz, �??Translation of colloidal particles next to a flat plate using evanescent waves,�?? Colloids and Surfaces a-Physicochemical and Engineering Aspects 211, 179�??195 (2002).

DESY Rep.

H.J. Hagemann,W. Gudat, and C. Kunz, �??Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,�?? DESY Rep. SR-74/7 Hamburg, Germany, (1974)

Jpn. J. Appl. Phys. Part 2-Letters

T. Tanaka and S. Yamamoto, �??Optically induced meandering Mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,�?? Japanese Journal of Applied Physics Part 2-Letters 41, L260�??L262 (2002).

Nature

A. Ashkin, J.M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared-laser beams,�?? Nature (London) 330, 769�??771 (1987).
[CrossRef]

Opt. Commun.

L.N. Ng, B.J. Luff, M.N. Zervas and J.S. Wilkinson, �??Propulsion of gold nanoparticles on optical waveguides,�?? Opt. Commun. 208, 117�??124 (2002).
[CrossRef]

K. Grujic, O.G. Hellesø, J.S. Wilkinson and J.P. Hole, �??Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,�?? Opt. Commun. 239, 227�??235 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P.B. Johnson and R.W. Christy, �??Optical Constants of Noble Metals,�?? Phys. Rev. B 6, 4370�??4379 (1972).
[CrossRef]

Rev. Mod. Phys.

M. Moskovits, �??Surface-enhanced spectroscopy,�??. Rev. Mod. Phys. 57, 783�??826 (1985).
[CrossRef]

Other

D.W. Lynch and W.R. Hunter, �??Optical properties of metals and semiconductors,�?? in Handbook of optical constants of solids, E.D. Palik, ed., (Academic Press, Orlando, 1985), pp. 275�??367.

Supplementary Material (1)

» Media 1: AVI (1824 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics