Abstract

The velocity distributions of 250nm diameter gold nanospheres trapped in the evanescent fields of optical waveguides are studied. The automated analysis of a large number of particles and temporal frames is described. It is used to show that the envelope of the particles’ speed follows the mode intensity profile of the evanescent field along a length of the waveguide and across its width. Modal beating in a dual-moded waveguide is mapped by analysis of nanoparticle distributions above the waveguide. A modal power of ~150mW at l=1066nm in a Cs + ion-exchanged monomode waveguide results in speeds of up to 500µm/s.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Grujic, O.G. Hellesø, J.P. Hole and J.S. Wilkinson, �??Sorting of polystyrene microspheres using a Y-branched optical waveguide,�?? Opt. Express 13, 1�??7 (2005).
    [CrossRef] [PubMed]
  2. K. Grujic, O.G. Hellesø, J.S. Wilkinson and J.P. Hole, �??Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,�?? Opt. Commun. 239, 227�??235 (2004).
    [CrossRef]
  3. S. Kawata and T. Tani, �??Optically driven Mie particles in an evanescent field along a channeled waveguide,�?? Opt. Lett. 21, 1768�??1770 (1996).
    [CrossRef] [PubMed]
  4. L.N. Ng, M.N. Zervas, J.S.Wilkinson and B.J. Luff, �??Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,�?? Appl. Phys. Lett. 76, 1993�??1995 (2000).
    [CrossRef]
  5. L.N. Ng, B.J. Luff, M.N. Zervas and J.S. Wilkinson, �??Propulsion of gold nanoparticles on optical waveguides,�?? Opt. Commun. 208, 117�??124 (2002).
    [CrossRef]
  6. T. Tanaka and S. Yamamoto, �??Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,�?? Appl. Phys. Lett. 77, 3131�??3133 (2000).
    [CrossRef]
  7. T. Tanaka and S. Yamamoto, �??Optically induced meandering Mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,�?? Japanese Journal of Applied Physics Part 2-Letters 41, L260�??L262 (2002).
    [CrossRef]
  8. A. Ashkin, J.M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared-laser beams,�?? Nature (London) 330, 769�??771 (1987).
    [CrossRef] [PubMed]
  9. M. Moskovits, �??Surface-enhanced spectroscopy,�??. Rev. Mod. Phys. 57, 783�??826 (1985).
    [CrossRef]
  10. S. Kawata and T. Sugiura, �??Movement of micrometer-sized particles in the evanesceent field of a laser-beam,�?? Opt. Lett. 17, 772�??774 (1992).
    [CrossRef] [PubMed]
  11. R.J. Oetama and J.Y. Walz, �??Translation of colloidal particles next to a flat plate using evanescent waves,�?? Colloids and Surfaces a-Physicochemical and Engineering Aspects 211, 179�??195 (2002).
    [CrossRef]
  12. P.B. Johnson and R.W. Christy, �??Optical Constants of Noble Metals,�?? Phys. Rev. B 6, 4370�??4379 (1972).
    [CrossRef]
  13. K. Svoboda and S.M. Block, �??Optical trapping of metallic Rayleigh particles,�?? Opt. Lett. 19, 930�??932 (1994).
    [CrossRef] [PubMed]
  14. H.J. Hagemann,W. Gudat, and C. Kunz, �??Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,�?? DESY Rep. SR-74/7 Hamburg, Germany, (1974)
  15. D.W. Lynch and W.R. Hunter, �??Optical properties of metals and semiconductors,�?? in Handbook of optical constants of solids, E.D. Palik, ed., (Academic Press, Orlando, 1985), pp. 275�??367.

Appl. Phys. Lett. (2)

L.N. Ng, M.N. Zervas, J.S.Wilkinson and B.J. Luff, �??Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,�?? Appl. Phys. Lett. 76, 1993�??1995 (2000).
[CrossRef]

T. Tanaka and S. Yamamoto, �??Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,�?? Appl. Phys. Lett. 77, 3131�??3133 (2000).
[CrossRef]

Collids Surf. A (1)

R.J. Oetama and J.Y. Walz, �??Translation of colloidal particles next to a flat plate using evanescent waves,�?? Colloids and Surfaces a-Physicochemical and Engineering Aspects 211, 179�??195 (2002).
[CrossRef]

DESY Rep. (1)

H.J. Hagemann,W. Gudat, and C. Kunz, �??Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,�?? DESY Rep. SR-74/7 Hamburg, Germany, (1974)

Jpn. J. Appl. Phys. Part 2-Letters (1)

T. Tanaka and S. Yamamoto, �??Optically induced meandering Mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,�?? Japanese Journal of Applied Physics Part 2-Letters 41, L260�??L262 (2002).
[CrossRef]

Nature (1)

A. Ashkin, J.M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared-laser beams,�?? Nature (London) 330, 769�??771 (1987).
[CrossRef] [PubMed]

Opt. Commun. (2)

L.N. Ng, B.J. Luff, M.N. Zervas and J.S. Wilkinson, �??Propulsion of gold nanoparticles on optical waveguides,�?? Opt. Commun. 208, 117�??124 (2002).
[CrossRef]

K. Grujic, O.G. Hellesø, J.S. Wilkinson and J.P. Hole, �??Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,�?? Opt. Commun. 239, 227�??235 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

P.B. Johnson and R.W. Christy, �??Optical Constants of Noble Metals,�?? Phys. Rev. B 6, 4370�??4379 (1972).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, �??Surface-enhanced spectroscopy,�??. Rev. Mod. Phys. 57, 783�??826 (1985).
[CrossRef]

Other (1)

D.W. Lynch and W.R. Hunter, �??Optical properties of metals and semiconductors,�?? in Handbook of optical constants of solids, E.D. Palik, ed., (Academic Press, Orlando, 1985), pp. 275�??367.

Supplementary Material (1)

» Media 1: AVI (1824 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Image showing particles above a 3µm wide, single-mode waveguide. The movie (1.8Mb) shows the motion of the particles-some of which are propelled along the waveguide.

Fig. 2.
Fig. 2.

a) Three consecutive images of three 250nm gold particles propelled along the waveguide b) A typical trace of a particle initially traveling randomly due to Brownian motion until it is propelled along the waveguide c) the velocity diagram of the particle in (b).

Fig. 3.
Fig. 3.

Position of propelled particles for a) a single mode waveguide b) a dual-moded waveguide.

Fig. 4.
Fig. 4.

Plot of lateral position against speed of particles for a) single mode waveguide b) dual-moded waveguide, and their respective beam profiles c),d).

Metrics