Abstract

The absorption spectra of the 0.5at.% and 1at.% Co: LaMgAl11O19 (LaMg1-xCoxAl11O19, x=0.005 and 0.01, abbreviated as Co:LMA) crystals were measured at room temperature, and the results show that the Co: LMA crystals have two absorption bands, and the absorption band located at 1030–1660 nm can be used for a passive saturable absorber Q switch of 1.3–1.6µm laser. The passive pulsed laser output of LD-end-pumped Nd:GdVO4 1.34µm laser was demonstrated for the first time by using the 0.5 at.% Co:LMA crystal as a saturable absorber Q switch. The maximum average output power of 500 mW was obtained under the pumping power of 25 W. The shortest pulse width, the largest pulse energy and the highest peak power were obtained to be 160 ns, 25.5µJ and 150 W, respectively.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Kalisky, �??Cr4+-doped crystals: their use as lasers and passive Q-switches,�?? Progress in Quantum Electronics 28, 249�??303 (2004).
    [CrossRef]
  2. K. V. Yumashev, �??Saturable absorber Co2+:MgAl2O4 crstal for Q switching of 1.34-μm Nd3+:YAlO3 and 1.54-μm Er3+:glass lasers,�?? Appl. Opt. 38, 6343-6346 (1999).
    [CrossRef]
  3. I. A. Denisov, M. I. Demchuk, N. V. Kuleshov and K. V. Yumashev, �??Co2+:LiGa5O8 saturable absorber passive Q-switch for 1.34μm Nd3+:YAlO3 and 1.54μm Er3+:glass lasers,�?? Appl. Phys. Lett. 77, 2455-2457 (2000).
    [CrossRef]
  4. K. V. Yumashev, I. A. Denisov, N. N. Posnov, et al., �??Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,�?? J. Alloys Compounds 341, 366�??370 (2002).
    [CrossRef]
  5. Tzong-Yow Tsai and Milton Birnbaum, �??Characteristics of Co2+: ZnS saturable-absorber Q switched neodymium lasers at 1.3μm,�?? J. Appl. Phys. 89, 2006-2012 (2001).
    [CrossRef]
  6. A. Di Lieto, P. Minguzzi, A. Pirastu, and V. Magni, �??High-power diffraction limited Nd:YVO4 continuous-wave lasers at 1.34 μm,�?? IEEE J. Quantum Electron. 39, 903-909 (2003).
    [CrossRef]
  7. H. Ogilvy, M. J. Withford, P. Dekker and J. A. Piper, �??Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342 nm,�?? Opt. Express 11, 2411-2415 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2411.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2411.<a/>
    [CrossRef] [PubMed]
  8. H. Zhang, C. Du, J. Wang et al., �??Laser performance of Nd:GdVO4 crystal at 1.34 μm and intracavity double red laser,�?? J. Cryst. Growth 249, 492-496(2003).
    [CrossRef]
  9. C. Du, H. Zhang, S. Yuan er al., �??Laser-diode-array end-pumped 8.2-W CW Nd:GdVO4 laser at 1.34 μm,�?? IEEE Photon. Technol. Lett. 16, 386-388(2004).
    [CrossRef]
  10. K. V. Yumashev, I. A. Denisov, N. N. Posnov,et al., �??Nonlinear spectroscopy and passive Q-switching operation of a Co2+:LaMgAl11O19 crystal,�?? J. Opt. Soc. Am. B 16, 2189-2194 (1999).
    [CrossRef]
  11. J. Liu, X. Meng, Z. Shao, M. Jiang, B. Ozygus, A. Ding and H. Weber, �??Pulse energy enhancement in passive Q-switching operation woth a class of Nd:GdxY1-xVO4 crystals,�?? Appl. Phys. Lett. 83, 1289-1291 (2003).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

I. A. Denisov, M. I. Demchuk, N. V. Kuleshov and K. V. Yumashev, �??Co2+:LiGa5O8 saturable absorber passive Q-switch for 1.34μm Nd3+:YAlO3 and 1.54μm Er3+:glass lasers,�?? Appl. Phys. Lett. 77, 2455-2457 (2000).
[CrossRef]

J. Liu, X. Meng, Z. Shao, M. Jiang, B. Ozygus, A. Ding and H. Weber, �??Pulse energy enhancement in passive Q-switching operation woth a class of Nd:GdxY1-xVO4 crystals,�?? Appl. Phys. Lett. 83, 1289-1291 (2003).
[CrossRef]

IEEE J. Quantum Electron.

A. Di Lieto, P. Minguzzi, A. Pirastu, and V. Magni, �??High-power diffraction limited Nd:YVO4 continuous-wave lasers at 1.34 μm,�?? IEEE J. Quantum Electron. 39, 903-909 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Du, H. Zhang, S. Yuan er al., �??Laser-diode-array end-pumped 8.2-W CW Nd:GdVO4 laser at 1.34 μm,�?? IEEE Photon. Technol. Lett. 16, 386-388(2004).
[CrossRef]

J. Alloys Compounds

K. V. Yumashev, I. A. Denisov, N. N. Posnov, et al., �??Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals,�?? J. Alloys Compounds 341, 366�??370 (2002).
[CrossRef]

J. Appl. Phys.

Tzong-Yow Tsai and Milton Birnbaum, �??Characteristics of Co2+: ZnS saturable-absorber Q switched neodymium lasers at 1.3μm,�?? J. Appl. Phys. 89, 2006-2012 (2001).
[CrossRef]

J. Cryst. Growth

H. Zhang, C. Du, J. Wang et al., �??Laser performance of Nd:GdVO4 crystal at 1.34 μm and intracavity double red laser,�?? J. Cryst. Growth 249, 492-496(2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Progress in Quantum Electronics

Y. Kalisky, �??Cr4+-doped crystals: their use as lasers and passive Q-switches,�?? Progress in Quantum Electronics 28, 249�??303 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of experimental laser setup.

Fig. 2.
Fig. 2.

The room-temperature absorption spectra of Co2+:LaMgAl11O19 crystal

Fig. 3.
Fig. 3.

Dependence of the cw output power at 1.34µm on the incident pump power

Fig. 4.
Fig. 4.

Dependence of the average output power at 1.34µm on the incident pump power

Fig. 5.
Fig. 5.

Dependence of the pulse width at 1.34µm on the incident pump power

Fig. 6.
Fig. 6.

Dependence of the pulse energy at 1.34µm on the incident pump power

Fig. 7.
Fig. 7.

Dependence of the peak power at 1.34µm on the incident pump power

Metrics