Abstract

Chirped and phase-sampled fiber Bragg gratings are fabricated and used as reflectors in tunable DBR fiber laser for the first time. By controlling the phase of each sampling section, sampled Bragg gratings (SBG) with different channel spacing can be obtained using only a single chirped phase mask. A 30nm-wide tunable Erbium-doped fiber (EDF) laser is designed and experimentally demonstrated by utilizing the vernier effect of two such SBGs with channel spacing of 3.2nm and 3.6nm, respectively. The lasers’ output power of different channels is almost identical (difference less than 1dB) within the tunable range.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Ouellette, “Broadly tunable DBR fiber laser using sampled fiber Bragg grating,” Electron. Lett. 31, 37–38 (1995).
    [Crossref]
  2. J.-F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35, 904–906 (1999).
    [Crossref]
  3. A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
    [Crossref]
  4. N. J. C. Libatique, L. Wang, and R. K. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Express 10, 1503–1507 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1503
    [PubMed]
  5. Morten Ibsen, Michael K. Durkin, Martin J. Cole, and Richard I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
    [Crossref]
  6. Xiangfei Chen, Jin Mao, Xuhui Li, Zhongqiang Lin, Shizhong Xie, and Chongcheng Fan, “High-channel-count comb filter with a simple structure,” in Optical Fiber Communication Conference, (Optical Society of America, Los Angeles, 2004) paper TuD2.
  7. Yitang Dai, Xiangfei Chen, Ximing Xu, Chongcheng Fan, and Shizhong Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. (to be published).
  8. L. Poladian, B. Ashton, W.E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol. 9, 173–188 (2003).
    [Crossref]

2003 (2)

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

L. Poladian, B. Ashton, W.E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol. 9, 173–188 (2003).
[Crossref]

2002 (1)

1999 (1)

J.-F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

1998 (1)

Morten Ibsen, Michael K. Durkin, Martin J. Cole, and Richard I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

1995 (1)

M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Ouellette, “Broadly tunable DBR fiber laser using sampled fiber Bragg grating,” Electron. Lett. 31, 37–38 (1995).
[Crossref]

Accard, A.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Ashton, B.

L. Poladian, B. Ashton, W.E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol. 9, 173–188 (2003).
[Crossref]

Bellemare, A.

J.-F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

Bergonzo, A.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Chen, Xiangfei

Xiangfei Chen, Jin Mao, Xuhui Li, Zhongqiang Lin, Shizhong Xie, and Chongcheng Fan, “High-channel-count comb filter with a simple structure,” in Optical Fiber Communication Conference, (Optical Society of America, Los Angeles, 2004) paper TuD2.

Yitang Dai, Xiangfei Chen, Ximing Xu, Chongcheng Fan, and Shizhong Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. (to be published).

Cole, Martin J.

Morten Ibsen, Michael K. Durkin, Martin J. Cole, and Richard I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Dai, Yitang

Yitang Dai, Xiangfei Chen, Ximing Xu, Chongcheng Fan, and Shizhong Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. (to be published).

De Gaudemaris, D.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Durand, O.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Durkin, Michael K.

Morten Ibsen, Michael K. Durkin, Martin J. Cole, and Richard I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Eggleton, B.J.

M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Ouellette, “Broadly tunable DBR fiber laser using sampled fiber Bragg grating,” Electron. Lett. 31, 37–38 (1995).
[Crossref]

Fan, Chongcheng

Xiangfei Chen, Jin Mao, Xuhui Li, Zhongqiang Lin, Shizhong Xie, and Chongcheng Fan, “High-channel-count comb filter with a simple structure,” in Optical Fiber Communication Conference, (Optical Society of America, Los Angeles, 2004) paper TuD2.

Yitang Dai, Xiangfei Chen, Ximing Xu, Chongcheng Fan, and Shizhong Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. (to be published).

Fillion, T.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Ibsen, M.

M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Ouellette, “Broadly tunable DBR fiber laser using sampled fiber Bragg grating,” Electron. Lett. 31, 37–38 (1995).
[Crossref]

Ibsen, Morten

Morten Ibsen, Michael K. Durkin, Martin J. Cole, and Richard I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Jacquet, J.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Jain, R. K.

Krol, H.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Laming, Richard I.

Morten Ibsen, Michael K. Durkin, Martin J. Cole, and Richard I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Landreau, J.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Latrasse, C.

J.-F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

Lemieux, J.-F.

J.-F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

Li, Xuhui

Xiangfei Chen, Jin Mao, Xuhui Li, Zhongqiang Lin, Shizhong Xie, and Chongcheng Fan, “High-channel-count comb filter with a simple structure,” in Optical Fiber Communication Conference, (Optical Society of America, Los Angeles, 2004) paper TuD2.

Libatique, N. J. C.

Lin, Zhongqiang

Xiangfei Chen, Jin Mao, Xuhui Li, Zhongqiang Lin, Shizhong Xie, and Chongcheng Fan, “High-channel-count comb filter with a simple structure,” in Optical Fiber Communication Conference, (Optical Society of America, Los Angeles, 2004) paper TuD2.

Mao, Jin

Xiangfei Chen, Jin Mao, Xuhui Li, Zhongqiang Lin, Shizhong Xie, and Chongcheng Fan, “High-channel-count comb filter with a simple structure,” in Optical Fiber Communication Conference, (Optical Society of America, Los Angeles, 2004) paper TuD2.

Marra, C.

L. Poladian, B. Ashton, W.E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol. 9, 173–188 (2003).
[Crossref]

Michie, A.

L. Poladian, B. Ashton, W.E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol. 9, 173–188 (2003).
[Crossref]

Ouellette, F.

M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Ouellette, “Broadly tunable DBR fiber laser using sampled fiber Bragg grating,” Electron. Lett. 31, 37–38 (1995).
[Crossref]

Padden, W.E.

L. Poladian, B. Ashton, W.E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol. 9, 173–188 (2003).
[Crossref]

Plais, A.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Poladian, L.

L. Poladian, B. Ashton, W.E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol. 9, 173–188 (2003).
[Crossref]

Rian, I.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Sceats, M.G.

M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Ouellette, “Broadly tunable DBR fiber laser using sampled fiber Bragg grating,” Electron. Lett. 31, 37–38 (1995).
[Crossref]

Sillard, H.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Tetu, M.

J.-F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

Vuong, A.

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Wang, L.

Xie, Shizhong

Xiangfei Chen, Jin Mao, Xuhui Li, Zhongqiang Lin, Shizhong Xie, and Chongcheng Fan, “High-channel-count comb filter with a simple structure,” in Optical Fiber Communication Conference, (Optical Society of America, Los Angeles, 2004) paper TuD2.

Yitang Dai, Xiangfei Chen, Ximing Xu, Chongcheng Fan, and Shizhong Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. (to be published).

Xu, Ximing

Yitang Dai, Xiangfei Chen, Ximing Xu, Chongcheng Fan, and Shizhong Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. (to be published).

Electron. Lett. (2)

M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Ouellette, “Broadly tunable DBR fiber laser using sampled fiber Bragg grating,” Electron. Lett. 31, 37–38 (1995).
[Crossref]

J.-F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Bergonzo, J. Jacquet, D. De Gaudemaris, J. Landreau, A. Plais, A. Vuong, H. Sillard, T. Fillion, O. Durand, H. Krol, A. Accard, and I. Rian, “Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection,” IEEE Photon. Technol. Lett. 15, 1144–1146 (2003).
[Crossref]

Morten Ibsen, Michael K. Durkin, Martin J. Cole, and Richard I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

L. Poladian, B. Ashton, W.E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol. 9, 173–188 (2003).
[Crossref]

Other (2)

Xiangfei Chen, Jin Mao, Xuhui Li, Zhongqiang Lin, Shizhong Xie, and Chongcheng Fan, “High-channel-count comb filter with a simple structure,” in Optical Fiber Communication Conference, (Optical Society of America, Los Angeles, 2004) paper TuD2.

Yitang Dai, Xiangfei Chen, Ximing Xu, Chongcheng Fan, and Shizhong Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Structure of DBR tunable fiber laser

Fig. 2.
Fig. 2.

Simulated reflection spectrum of an SBG. Parameters see text.

Fig. 3.
Fig. 3.

Measured reflection spectrum of SBGs with Δλ=3.2nm, P=0.256mm, φ=1.879π (solid curve); and Δλ=3.6nm, P=0.228mm, φ=1.905π (dashed curve).

Fig. 4.
Fig. 4.

Measured tuning characteristic of the fiber laser (one SBG fixed)

Fig. 5.
Fig. 5.

Measured laser output spectrum at around 1533.53nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ k = k φ , k = 1 , 2 , 3 , . . . n 1
φ + 2 π C Λ 0 2 P 2 = 2 π N
Δ λ = 2 n eff Λ 0 2 N P

Metrics