Abstract

Electrically switched distributed-feedback (DFB) lasing action is presented in a Pyrromethene 580 lasing dye-doped holographic polymer dispersed liquid crystal (H-PDLC) transmission grating structure. This design, when compared with the previously utilized H-PDLC reflection grating structure, has the advantage of a greatly enlarged gain length (10 mm) and a low concentration of liquid crystal (20%) while maintaining sufficient refractive index modulation. The experimental results demonstrate that the emitted laser bandwidth (~5 nm) can be obtained with a pump energy threshold of ~0.3 mJ at three different wavelengths, 561 nm, 569 nm and 592 nm, corresponding to three different grating spacings. The near- and far-field measurements have shown a high directionality of the lasing output. The lasing can be electrically switched off by an applied field of 30V/µm. The temporal, spectral, and output/input properties of the laser output are also presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,” Adv. Mater. 14, 187–191 (2002).
    [Crossref]
  2. R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
    [PubMed]
  3. M. J. Escuti, J. Qi, and G. P. Crawford, “Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals,” Opt. Lett. 28, 522–524, (2003)
    [Crossref] [PubMed]
  4. R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes”, Chem. Mater. 5, 1533–1538 (1993).
    [Crossref]
  5. R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003).
    [Crossref]
  6. R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
    [Crossref]
  7. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [Crossref]
  8. G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
    [Crossref] [PubMed]
  9. N. Tsutsumi, T. Kawahira, and W. Sakai, “Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,” Appl. Phys. Lett. 83, 2533–2535 (2003).
    [Crossref]
  10. C. Ye, L. Shi, J. Wang, D. Lo, and X.-G. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101–4103 (2003).
    [Crossref]
  11. G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, and P. N. Prasad, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003).
    [Crossref]
  12. D. E. Lucchetta, L. Criante, O. Francesangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84, 837–839 (2004).
    [Crossref]
  13. H. Kogelnik and C.V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
    [Crossref]
  14. H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
    [Crossref]
  15. M. Born and E. Wolf, Principle of Optics, (New York, Pergamon, 1987), Sec. 8.6.1.
  16. T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),”Annu. Rev. Mater. Sci. 30, 83–115 (2000).
    [Crossref]

2005 (1)

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

2004 (2)

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

D. E. Lucchetta, L. Criante, O. Francesangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84, 837–839 (2004).
[Crossref]

2003 (5)

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003).
[Crossref]

N. Tsutsumi, T. Kawahira, and W. Sakai, “Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,” Appl. Phys. Lett. 83, 2533–2535 (2003).
[Crossref]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-G. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101–4103 (2003).
[Crossref]

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, and P. N. Prasad, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003).
[Crossref]

M. J. Escuti, J. Qi, and G. P. Crawford, “Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals,” Opt. Lett. 28, 522–524, (2003)
[Crossref] [PubMed]

2002 (2)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,” Adv. Mater. 14, 187–191 (2002).
[Crossref]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
[PubMed]

2000 (1)

T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),”Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[Crossref]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

1993 (1)

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes”, Chem. Mater. 5, 1533–1538 (1993).
[Crossref]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

1971 (1)

H. Kogelnik and C.V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[Crossref]

Barna, V

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Bartolino, R.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Born, M.

M. Born and E. Wolf, Principle of Optics, (New York, Pergamon, 1987), Sec. 8.6.1.

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Bunning, T. J.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,” Adv. Mater. 14, 187–191 (2002).
[Crossref]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
[PubMed]

T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),”Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[Crossref]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes”, Chem. Mater. 5, 1533–1538 (1993).
[Crossref]

Caputo, R.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Cartwright, A. N.

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, and P. N. Prasad, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003).
[Crossref]

Chandra, S.

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
[PubMed]

Crawford, G. P.

Criante, L.

D. E. Lucchetta, L. Criante, O. Francesangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84, 837–839 (2004).
[Crossref]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Escuti, M. J.

Francesangeli, O.

D. E. Lucchetta, L. Criante, O. Francesangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84, 837–839 (2004).
[Crossref]

He, G. S.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, and P. N. Prasad, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003).
[Crossref]

Hsiao, Vincent K.S.

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, and P. N. Prasad, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003).
[Crossref]

Jakubiak, R.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003).
[Crossref]

Kawahira, T.

N. Tsutsumi, T. Kawahira, and W. Sakai, “Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,” Appl. Phys. Lett. 83, 2533–2535 (2003).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

H. Kogelnik and C.V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[Crossref]

Lin, T. C.

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, and P. N. Prasad, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003).
[Crossref]

Lo, D.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-G. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101–4103 (2003).
[Crossref]

Luca, A. D.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Lucchetta, D. E.

D. E. Lucchetta, L. Criante, O. Francesangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84, 837–839 (2004).
[Crossref]

Natarajan, L. V.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,” Adv. Mater. 14, 187–191 (2002).
[Crossref]

Natarajan, L.V.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003).
[Crossref]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
[PubMed]

T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),”Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[Crossref]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes”, Chem. Mater. 5, 1533–1538 (1993).
[Crossref]

Prasad, P. N.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, and P. N. Prasad, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003).
[Crossref]

Price, G. N.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Qi, J.

Sakai, W.

N. Tsutsumi, T. Kawahira, and W. Sakai, “Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,” Appl. Phys. Lett. 83, 2533–2535 (2003).
[Crossref]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Scaramuzza, N.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Shank, C.V.

H. Kogelnik and C.V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[Crossref]

Shi, L.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-G. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101–4103 (2003).
[Crossref]

Simoni, F.

D. E. Lucchetta, L. Criante, O. Francesangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84, 837–839 (2004).
[Crossref]

Strangi, G.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Sutherland, R. L.

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
[PubMed]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,” Adv. Mater. 14, 187–191 (2002).
[Crossref]

T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),”Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[Crossref]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes”, Chem. Mater. 5, 1533–1538 (1993).
[Crossref]

Tomlin, D.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,” Adv. Mater. 14, 187–191 (2002).
[Crossref]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
[PubMed]

Tondiglia, V.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

Tondiglia, V. P.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,” Adv. Mater. 14, 187–191 (2002).
[Crossref]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
[PubMed]

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes”, Chem. Mater. 5, 1533–1538 (1993).
[Crossref]

Tondiglia, V.P.

T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),”Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[Crossref]

Tsutsumi, N.

N. Tsutsumi, T. Kawahira, and W. Sakai, “Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,” Appl. Phys. Lett. 83, 2533–2535 (2003).
[Crossref]

Umeton, C.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Vaia, R. A.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003).
[Crossref]

Versace, C.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Wang, J.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-G. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101–4103 (2003).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principle of Optics, (New York, Pergamon, 1987), Sec. 8.6.1.

Ye, C.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-G. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101–4103 (2003).
[Crossref]

Zhu, X.-G.

C. Ye, L. Shi, J. Wang, D. Lo, and X.-G. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101–4103 (2003).
[Crossref]

Adv. Mater. (2)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,” Adv. Mater. 14, 187–191 (2002).
[Crossref]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003).
[Crossref]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),”Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[Crossref]

Appl. Phys. Lett. (6)

N. Tsutsumi, T. Kawahira, and W. Sakai, “Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,” Appl. Phys. Lett. 83, 2533–2535 (2003).
[Crossref]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-G. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101–4103 (2003).
[Crossref]

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, and P. N. Prasad, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003).
[Crossref]

D. E. Lucchetta, L. Criante, O. Francesangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84, 837–839 (2004).
[Crossref]

H. Kogelnik and C.V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[Crossref]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85, 6095–6097 (2004).
[Crossref]

Chem. Mater. (1)

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes”, Chem. Mater. 5, 1533–1538 (1993).
[Crossref]

J. Appl. Phys. (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Opt. Lett. (1)

Optics Express (1)

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express 10, 1074–1082 (2002).
[PubMed]

Phys. Rev. Lett. (1)

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principle of Optics, (New York, Pergamon, 1987), Sec. 8.6.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the lasing experiment.

Fig. 2.
Fig. 2.

Linear absorption spectrum (a) and fluorescence emission spectrum (b) of dye doped polymer H-PDLC film. The emitted lasing wavelength is expected to be between 540 nm to 600 nm.

Fig. 3.
Fig. 3.

Emitted 569 nm lasing energy as a function of the 532 nm pump energy, and images (inset) of near-field (left) and far-field (right) of emitted lasing

Fig. 4.
Fig. 4.

The lasing spectra showing the narrowing effect of lasing behavior in the dye doped H-PDLC grating with three different grating spacings. The pump threshold energy is ~2.0 mJ.

Fig. 5.
Fig. 5.

(a) Temporal profile of the pump laser pulse, (b) temporal profile of fluorescence emitted from the grating sample, and (c) temporal profile of DFB cavity laser pulse from the same sample.

Fig. 6.
Fig. 6.

The diffraction efficiency dependence of the PM580-doped H-PDLC grating with different applied electric field (inset), and the switching behavior of lasing in the same film.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ ( λ 4 π Δ n L ) × L n ( G ) ,
λ las = 2 n eff Λ m ,

Metrics