Abstract

Electrically switched distributed-feedback (DFB) lasing action is presented in a Pyrromethene 580 lasing dye-doped holographic polymer dispersed liquid crystal (H-PDLC) transmission grating structure. This design, when compared with the previously utilized H-PDLC reflection grating structure, has the advantage of a greatly enlarged gain length (10 mm) and a low concentration of liquid crystal (20%) while maintaining sufficient refractive index modulation. The experimental results demonstrate that the emitted laser bandwidth (~5 nm) can be obtained with a pump energy threshold of ~0.3 mJ at three different wavelengths, 561 nm, 569 nm and 592 nm, corresponding to three different grating spacings. The near- and far-field measurements have shown a high directionality of the lasing output. The lasing can be electrically switched off by an applied field of 30V/µm. The temporal, spectral, and output/input properties of the laser output are also presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, �??Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,�?? Adv. Mater. 14, 187-191 (2002).
    [CrossRef]
  2. R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin and T. J. Bunning, �??Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,�?? Optics Express 10, 1074-1082 (2002).
    [PubMed]
  3. M. J. Escuti, J. Qi, G. P. Crawford, �??Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals,�?? Opt. Lett. 28, 522-524, (2003)
    [CrossRef] [PubMed]
  4. R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia and T. J. Bunning, �??Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes�??, Chem. Mater. 5, 1533-1538 (1993).
    [CrossRef]
  5. R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, �??Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,�?? Adv. Mater. 15, 241-244 (2003).
    [CrossRef]
  6. R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, �??Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,�?? Appl. Phys. Lett. 85, 6095-6097 (2004).
    [CrossRef]
  7. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  8. G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, �??Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,�?? Phys. Rev. Lett. 94, 063903 (2005).
    [CrossRef] [PubMed]
  9. N. Tsutsumi, T. Kawahira, and W. Sakai, �??Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,�?? Appl. Phys. Lett. 83, 2533-2535 (2003).
    [CrossRef]
  10. C. Ye, L. Shi, J. Wang, D. Lo, X.-G. Zhu, �??Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,�?? Appl. Phys. Lett. 83, 4101-4103 (2003).
    [CrossRef]
  11. G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, P. N. Prasad, �??Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,�?? Appl. Phys. Lett. 83, 2733-2735 (2003).
    [CrossRef]
  12. D. E. Lucchetta, L. Criante, O. Francesangeli and F. Simoni, �??Wavelength flipping in laser emission driven by a switchable holographic grating,�?? Appl. Phys. Lett. 84, 837-839 (2004).
    [CrossRef]
  13. H. Kogelnik, and C.V. Shank, �??Stimulated emission in a periodic structure,�?? Appl. Phys. Lett. 18, 152-154 (1971).
    [CrossRef]
  14. H. Kogelnik and C. V. Shank, �??Coupled-Wave Theory of Distributed Feedback Lasers,�?? J. Appl. Phys. 43, 2327-2335 (1972).
    [CrossRef]
  15. M. Born and E. Wolf, Principle of Optics, (New York, Pergamon, 1987), Sec. 8.6.1.
  16. T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, �??Holographic polymer-dispersed liquid crystals (H-PDLCs),�??Annu. Rev. Mater. Sci. 30, 83-115 (2000).
    [CrossRef]

Adv. Mater.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, �??Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,�?? Adv. Mater. 15, 241-244 (2003).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, �??Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,�?? Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Annu. Rev. Mater. Sci.

T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, �??Holographic polymer-dispersed liquid crystals (H-PDLCs),�??Annu. Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

Appl. Phys. Lett.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, �??Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,�?? Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

N. Tsutsumi, T. Kawahira, and W. Sakai, �??Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,�?? Appl. Phys. Lett. 83, 2533-2535 (2003).
[CrossRef]

C. Ye, L. Shi, J. Wang, D. Lo, X.-G. Zhu, �??Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,�?? Appl. Phys. Lett. 83, 4101-4103 (2003).
[CrossRef]

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, P. N. Prasad, �??Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,�?? Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

D. E. Lucchetta, L. Criante, O. Francesangeli and F. Simoni, �??Wavelength flipping in laser emission driven by a switchable holographic grating,�?? Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

H. Kogelnik, and C.V. Shank, �??Stimulated emission in a periodic structure,�?? Appl. Phys. Lett. 18, 152-154 (1971).
[CrossRef]

Chem. Mater.

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia and T. J. Bunning, �??Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes�??, Chem. Mater. 5, 1533-1538 (1993).
[CrossRef]

J. Appl. Phys.

H. Kogelnik and C. V. Shank, �??Coupled-Wave Theory of Distributed Feedback Lasers,�?? J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Opt. Lett.

Optics Express

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin and T. J. Bunning, �??Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,�?? Optics Express 10, 1074-1082 (2002).
[PubMed]

Phys. Rev. Lett.

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, �??Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,�?? Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principle of Optics, (New York, Pergamon, 1987), Sec. 8.6.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the lasing experiment.

Fig. 2.
Fig. 2.

Linear absorption spectrum (a) and fluorescence emission spectrum (b) of dye doped polymer H-PDLC film. The emitted lasing wavelength is expected to be between 540 nm to 600 nm.

Fig. 3.
Fig. 3.

Emitted 569 nm lasing energy as a function of the 532 nm pump energy, and images (inset) of near-field (left) and far-field (right) of emitted lasing

Fig. 4.
Fig. 4.

The lasing spectra showing the narrowing effect of lasing behavior in the dye doped H-PDLC grating with three different grating spacings. The pump threshold energy is ~2.0 mJ.

Fig. 5.
Fig. 5.

(a) Temporal profile of the pump laser pulse, (b) temporal profile of fluorescence emitted from the grating sample, and (c) temporal profile of DFB cavity laser pulse from the same sample.

Fig. 6.
Fig. 6.

The diffraction efficiency dependence of the PM580-doped H-PDLC grating with different applied electric field (inset), and the switching behavior of lasing in the same film.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ ( λ 4 π Δ n L ) × L n ( G ) ,
λ las = 2 n eff Λ m ,

Metrics