Abstract

Electrically switched distributed-feedback (DFB) lasing action is presented in a Pyrromethene 580 lasing dye-doped holographic polymer dispersed liquid crystal (H-PDLC) transmission grating structure. This design, when compared with the previously utilized H-PDLC reflection grating structure, has the advantage of a greatly enlarged gain length (10 mm) and a low concentration of liquid crystal (20%) while maintaining sufficient refractive index modulation. The experimental results demonstrate that the emitted laser bandwidth (~5 nm) can be obtained with a pump energy threshold of ~0.3 mJ at three different wavelengths, 561 nm, 569 nm and 592 nm, corresponding to three different grating spacings. The near- and far-field measurements have shown a high directionality of the lasing output. The lasing can be electrically switched off by an applied field of 30V/μm. The temporal, spectral, and output/input properties of the laser output are also presented.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, �??Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,�?? Adv. Mater. 14, 187-191 (2002).
    [CrossRef]
  2. R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin and T. J. Bunning, �??Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,�?? Optics Express 10, 1074-1082 (2002).
  3. M. J. Escuti, J. Qi, G. P. Crawford, �??Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals,�?? Opt. Lett. 28, 522-524, (2003)
  4. R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia and T. J. Bunning, �??Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes�??, Chem. Mater. 5, 1533-1538 (1993).
    [CrossRef]
  5. R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, �??Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,�?? Adv. Mater. 15, 241-244 (2003).
    [CrossRef]
  6. R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, �??Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,�?? Appl. Phys. Lett. 85, 6095-6097 (2004).
    [CrossRef]
  7. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  8. G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, �??Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,�?? Phys. Rev. Lett. 94, 063903 (2005).
    [CrossRef]
  9. N. Tsutsumi, T. Kawahira, and W. Sakai, �??Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,�?? Appl. Phys. Lett. 83, 2533-2535 (2003).
    [CrossRef]
  10. C. Ye, L. Shi, J. Wang, D. Lo, X.-G. Zhu, �??Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,�?? Appl. Phys. Lett. 83, 4101-4103 (2003).
    [CrossRef]
  11. G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, P. N. Prasad, �??Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,�?? Appl. Phys. Lett. 83, 2733-2735 (2003).
    [CrossRef]
  12. D. E. Lucchetta, L. Criante, O. Francesangeli and F. Simoni, �??Wavelength flipping in laser emission driven by a switchable holographic grating,�?? Appl. Phys. Lett. 84, 837-839 (2004).
    [CrossRef]
  13. H. Kogelnik, and C.V. Shank, �??Stimulated emission in a periodic structure,�?? Appl. Phys. Lett. 18, 152-154 (1971).
    [CrossRef]
  14. H. Kogelnik and C. V. Shank, �??Coupled-Wave Theory of Distributed Feedback Lasers,�?? J. Appl. Phys. 43, 2327-2335 (1972).
    [CrossRef]
  15. M. Born and E. Wolf, Principle of Optics, (New York, Pergamon, 1987), Sec. 8.6.1.
  16. T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, �??Holographic polymer-dispersed liquid crystals (H-PDLCs),�??Annu. Rev. Mater. Sci. 30, 83-115 (2000).
    [CrossRef]

Adv. Mater. (2)

R. Jakubiak, T. J. Bunning, R. A. Vaia, L.V. Natarajan, and V. P. Tondiglia, �??Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,�?? Adv. Mater. 15, 241-244 (2003).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, �??Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals,�?? Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L.V. Natarajan, V.P. Tondiglia, and R. L. Sutherland, �??Holographic polymer-dispersed liquid crystals (H-PDLCs),�??Annu. Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

Appl. Phys. Lett. (6)

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning and R. A. Vaia, �??Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,�?? Appl. Phys. Lett. 85, 6095-6097 (2004).
[CrossRef]

N. Tsutsumi, T. Kawahira, and W. Sakai, �??Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices,�?? Appl. Phys. Lett. 83, 2533-2535 (2003).
[CrossRef]

C. Ye, L. Shi, J. Wang, D. Lo, X.-G. Zhu, �??Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,�?? Appl. Phys. Lett. 83, 4101-4103 (2003).
[CrossRef]

G. S. He, T. C. Lin, Vincent K.S. Hsiao, A. N. Cartwright, P. N. Prasad, �??Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,�?? Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

D. E. Lucchetta, L. Criante, O. Francesangeli and F. Simoni, �??Wavelength flipping in laser emission driven by a switchable holographic grating,�?? Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

H. Kogelnik, and C.V. Shank, �??Stimulated emission in a periodic structure,�?? Appl. Phys. Lett. 18, 152-154 (1971).
[CrossRef]

Chem. Mater. (1)

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia and T. J. Bunning, �??Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes�??, Chem. Mater. 5, 1533-1538 (1993).
[CrossRef]

J. Appl. Phys. (2)

H. Kogelnik and C. V. Shank, �??Coupled-Wave Theory of Distributed Feedback Lasers,�?? J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Opt. Lett. (1)

Optics Express (1)

R. L. Sutherland, L.V. Natarajan, V. P. Tondiglia, S. Chandra, D. Tomlin and T. J. Bunning, �??Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,�?? Optics Express 10, 1074-1082 (2002).

Phys. Rev. Lett. (1)

G. Strangi, V Barna, R. Caputo, A. D. Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, �??Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback,�?? Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principle of Optics, (New York, Pergamon, 1987), Sec. 8.6.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics