Abstract

In this study, we investigated the sensitivity enhancement in nanowire-based surface plasmon resonance (SPR) biosensors using rigorous coupled wave analysis (RCWA). The enhancement, enabled by the excitation of localized surface plasmons in gold nanowires, offers improved performance in sensitivity as well as in reproducibility and customizability. Calculation results found that a T-profile provides higher sensitivity than an inverse T-profile in general and also determined optimum design parameters. Our study on a nanowire-enhanced SPR biosensor demonstrates the potential for significant improvement in the sensitivity through the nanowire-mediated localized SPR.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Rothenhäusler and W. Knoll, �??Surface-plasmon microscopy,�?? Nature 332, 615-617 (1988).
    [CrossRef]
  2. K. Matsubara, S. Kawata, and S. Minami, �??Optical chemical sensor based on surface plasmon measurement,�?? Appl. Opt. 27, 1160-1163 (1988).
    [CrossRef] [PubMed]
  3. C. Nylanderm B. Liedberg, and T. Lind, �??Gas detection by means of surface plasmon resonance,�?? Sens. Actuators 3, 79-88 (1982-1983).
    [CrossRef]
  4. D. Hall, �??Use of optical biosensors for the study of mechanically concerted surface adsorption processes,�?? Anal. Biochem. 288, 109-125 (2001).
    [CrossRef] [PubMed]
  5. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, �??Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,�?? Langmuir 14, 5636-5648 (1998).
    [CrossRef]
  6. D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, �??A high-sensitivity micromachined biosensor,�?? Proceedings of the IEEE, 85, 672-680 (1997).
    [CrossRef]
  7. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, �??Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,�?? J. Am. Chem. Soc. 122, 9071-9077 (2000).
    [CrossRef]
  8. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, �??Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,�?? J. Am. Chem. Soc. 123, 1471-1482 (2001).
    [CrossRef]
  9. A. J. Haes and R. P. Van Duyne, �??A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,�?? J. Am. Chem. Soc. 124, 10596-10604 (2002).
    [CrossRef] [PubMed]
  10. M. G. Moharam and T. K. Gaylord, �??Diffraction analysis of dielectric surface-relief gratings,�?? J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  11. M. G. Moharam and T. K. Gaylord, �??Rigorous coupled-wave analysis of metallic surface-relief gratings,�?? J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [CrossRef]
  12. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, �??100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,�?? Appl. Phys. 78, 142-143 (2001).
  13. T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, �??Electrodynamics of noble metal nanoparticles and nanoparticle clusters,�?? J. Cluster Sci. 10, 295-317 (1999).
    [CrossRef]
  14. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, �??Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,�?? Opt. Lett. 28, 1870-1872 (2003).
    [CrossRef] [PubMed]
  15. J. Lermé, �??Introduction of quantum finite-size effects in the Mie�??s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters,�?? Eur. Phys. J. D 10, 265-277 (2000).
    [CrossRef]
  16. E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, �??Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,�?? J. Am. Opt. Soc. A 19, 101-111 (2002).
    [CrossRef]
  17. K. M. Byun, D. Kim, and S. J. Kim, �??Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis,�?? in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc SPIE 5703, 61-70 (2005).
  18. E. Hutter, S. Cha, J-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, �??Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,�?? J. Phys. Chem. B 105, 8-12 (2001).
    [CrossRef]
  19. L. A. Lyon, M. D. Musick, and M. J. Natan, �??Colloidal Au-enhanced surface plasmon resonance immunosensing,�?? Anal. Chem. 70, 5177-5183 (1998).
    [CrossRef] [PubMed]
  20. L. A. Lyon, D. J. Pena, and M. J. Natan, �??Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence,�?? J. Phys. Chem. B 103, 5826-5831 (1999).
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Orlando, FL (1985).
  22. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, �??Optical properties of Ag and Au nanowire gratings,�?? J. Appl. Phys. 90, 3825-3830 (2001).
    [CrossRef]
  23. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, �??Optical dichroism of lithographically designed silver nanoparticle films,�?? Opt. Lett. 21, 1099-1101 (1996).
    [CrossRef] [PubMed]
  24. J. P. Kottmann and O. J. F. Martin, �??Retardation-induced plasmon resonances in coupled nanoparticles,�?? Opt. Lett. 26, 1096-1098 (2001).
    [CrossRef]

Anal. Biochem. (1)

D. Hall, �??Use of optical biosensors for the study of mechanically concerted surface adsorption processes,�?? Anal. Biochem. 288, 109-125 (2001).
[CrossRef] [PubMed]

Anal. Chem. (1)

L. A. Lyon, M. D. Musick, and M. J. Natan, �??Colloidal Au-enhanced surface plasmon resonance immunosensing,�?? Anal. Chem. 70, 5177-5183 (1998).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, �??100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,�?? Appl. Phys. 78, 142-143 (2001).

Eur. Phys. J. D (1)

J. Lermé, �??Introduction of quantum finite-size effects in the Mie�??s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters,�?? Eur. Phys. J. D 10, 265-277 (2000).
[CrossRef]

J. Am. Chem. Soc. (3)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, �??Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,�?? J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, �??Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,�?? J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

A. J. Haes and R. P. Van Duyne, �??A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,�?? J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

J. Am. Opt. Soc. A (1)

E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, �??Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,�?? J. Am. Opt. Soc. A 19, 101-111 (2002).
[CrossRef]

J. Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, �??Optical properties of Ag and Au nanowire gratings,�?? J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

J. Cluster Sci. (1)

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, �??Electrodynamics of noble metal nanoparticles and nanoparticle clusters,�?? J. Cluster Sci. 10, 295-317 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (2)

L. A. Lyon, D. J. Pena, and M. J. Natan, �??Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence,�?? J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

E. Hutter, S. Cha, J-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, �??Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,�?? J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Langmuir (1)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, �??Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,�?? Langmuir 14, 5636-5648 (1998).
[CrossRef]

Nature (1)

B. Rothenhäusler and W. Knoll, �??Surface-plasmon microscopy,�?? Nature 332, 615-617 (1988).
[CrossRef]

Opt. Lett. (3)

Proc IEEE 1997 (1)

D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Chrisey, and R. J. Colton, �??A high-sensitivity micromachined biosensor,�?? Proceedings of the IEEE, 85, 672-680 (1997).
[CrossRef]

Proc SPIE (1)

K. M. Byun, D. Kim, and S. J. Kim, �??Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis,�?? in Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., Proc SPIE 5703, 61-70 (2005).

Sens. Actuators (1)

C. Nylanderm B. Liedberg, and T. Lind, �??Gas detection by means of surface plasmon resonance,�?? Sens. Actuators 3, 79-88 (1982-1983).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Orlando, FL (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of a nanowire-enhanced SPR biosensor with a multilayer model used in this study. A beam is in the xz-plane incident at an angle θ. Layer 1, 2, 3, 4, and 5 represent a BK7 glass prism, an attachment film of chromium, gold film supporting SPPs, one-dimensional gold nanowires, and a self-assembled monolayer (SAM), respectively. Dimensions of gold nanowires shown in the inset are decided by a geometry factor (GF). Also, d3, d4, and d5 denote the thickness of gold film, gold nanowires, and a SAM.

Fig. 2.
Fig. 2.

SPR curves (reflectance vs. incidence angle) of SPR biosensors: for a conventional SPR biosensor, and for a nanowire-enhanced SPR biosensor of Fig. 1. Nanowires have an inverse T-profile at GF=0.75, and nanowire period Λ=100 nm. In both curves, no-binding on a bare gold film is represented with the solid line and binding with analytes with the dotted line.

Fig. 3.
Fig. 3.

(a) Peak SEF with GF for T-profile (▿) and inverse T-profile (▴). For each profile, GF is varied from 0 to 1. The inset shows extinction spectra for two different nanowire profiles with a T-profile in a solid line and an inverse T-profile in a dotted line. The vertical line in the extinction spectra indicates λ=633 nm. For the inset, GF=0.25 and nanowire period Λ=50 nm. (b) Nanowire period Λ peak when the SEF is the highest for each GF.

Fig. 4.
Fig. 4.

(a) The SEF width defined as the range of nanowire periods in which the SEF exceed a given SEF threshold in the SEF characteristics, as GF varies from 0 to 1. The threshold used to determine the SET width is 20. (b) Plot of SEF characteristics of a T-profile at GF=0.5.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SEF = Δ θ NWSPR Δ θ SPR = θ NWSPR ( target analyte ) θ NWSPR ( no analyte ) θ SPR ( target analyte ) θ SPR ( no analyte ) ,

Metrics