Abstract

We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous-wave (cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science,  235, 1517–1520 (1987)
    [CrossRef] [PubMed]
  3. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optical regime,” in Methods in Cell Biology, vol.55, M.P. Sheetz, ed. (Academic Press, San Diego, 1998), pp.1–27.
    [CrossRef]
  4. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [CrossRef] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987)
    [CrossRef] [PubMed]
  6. K.C. Neuman and S.M. Block, “Optical trapping”, Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [CrossRef]
  7. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods”, Science,  283, 1689–1695 (1999).
    [CrossRef] [PubMed]
  8. D. G. Grier, “A revolution in optical manipulation”, Nature (London),  424, 810–816 (2003).
    [CrossRef]
  9. P.T. Korda, M.B. Taylor, and D.G. Grier, “Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers”, Phys. Rev. Lett. 89, 128301-1 (2002).
    [CrossRef]
  10. C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics”, Nature (London),  421, 423–427 (2003).
    [CrossRef]
  11. B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
    [CrossRef]
  12. L. Paterson, M.P. MacDonald, J. Arlt, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
    [CrossRef] [PubMed]
  13. M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
    [CrossRef] [PubMed]
  14. C. A. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27, 249–251 (2002).
    [CrossRef]
  15. C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
    [CrossRef]
  16. C. A. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93, 2982–2986 (2003)
    [CrossRef]
  17. J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
    [CrossRef]
  18. B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express,  12, 3011–3017 (2004).
    [CrossRef] [PubMed]
  19. A. A. Ambardekar and Y. Q. Li, Optical levitation and manipulation of stuck particles with pulsed optical tweezers, Opt. Lett. (in print)
  20. T. G. M. van de Ven. Colloidal Hydrodynamics, (Academic Press, San Diego, 1989).
  21. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1965).

2005 (1)

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[CrossRef]

2004 (2)

2003 (4)

D. G. Grier, “A revolution in optical manipulation”, Nature (London),  424, 810–816 (2003).
[CrossRef]

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics”, Nature (London),  421, 423–427 (2003).
[CrossRef]

B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
[CrossRef]

C. A. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93, 2982–2986 (2003)
[CrossRef]

2002 (4)

M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
[CrossRef] [PubMed]

C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
[CrossRef]

C. A. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27, 249–251 (2002).
[CrossRef]

P.T. Korda, M.B. Taylor, and D.G. Grier, “Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers”, Phys. Rev. Lett. 89, 128301-1 (2002).
[CrossRef]

2001 (1)

L. Paterson, M.P. MacDonald, J. Arlt, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[CrossRef] [PubMed]

1999 (1)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods”, Science,  283, 1689–1695 (1999).
[CrossRef] [PubMed]

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

1987 (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987)
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science,  235, 1517–1520 (1987)
[CrossRef] [PubMed]

1986 (1)

Agate, B.

Ambardekar, A. A.

A. A. Ambardekar and Y. Q. Li, Optical levitation and manipulation of stuck particles with pulsed optical tweezers, Opt. Lett. (in print)

Arlt, J.

M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M.P. MacDonald, J. Arlt, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science,  235, 1517–1520 (1987)
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987)
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optical regime,” in Methods in Cell Biology, vol.55, M.P. Sheetz, ed. (Academic Press, San Diego, 1998), pp.1–27.
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Block, S.M.

K.C. Neuman and S.M. Block, “Optical trapping”, Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Brenner, H.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1965).

Brown, C. T. A.

Bryant, P.E.

L. Paterson, M.P. MacDonald, J. Arlt, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[CrossRef] [PubMed]

Bryant, Z.

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics”, Nature (London),  421, 423–427 (2003).
[CrossRef]

Bustamante, C.

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics”, Nature (London),  421, 423–427 (2003).
[CrossRef]

B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
[CrossRef]

Chu, S.

Deng, J. L.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[CrossRef]

Dholakia, K.

B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express,  12, 3011–3017 (2004).
[CrossRef] [PubMed]

M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M.P. MacDonald, J. Arlt, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[CrossRef] [PubMed]

Dinno, M. A.

Dumont, S.

B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987)
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science,  235, 1517–1520 (1987)
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation”, Nature (London),  424, 810–816 (2003).
[CrossRef]

Grier, D.G.

P.T. Korda, M.B. Taylor, and D.G. Grier, “Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers”, Phys. Rev. Lett. 89, 128301-1 (2002).
[CrossRef]

Happel, J.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1965).

Korda, P.T.

P.T. Korda, M.B. Taylor, and D.G. Grier, “Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers”, Phys. Rev. Lett. 89, 128301-1 (2002).
[CrossRef]

Li, Y. Q.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[CrossRef]

C. A. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93, 2982–2986 (2003)
[CrossRef]

C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
[CrossRef]

C. A. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27, 249–251 (2002).
[CrossRef]

A. A. Ambardekar and Y. Q. Li, Optical levitation and manipulation of stuck particles with pulsed optical tweezers, Opt. Lett. (in print)

Liphardt, J.

B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
[CrossRef]

MacDonald, M.P.

M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M.P. MacDonald, J. Arlt, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[CrossRef] [PubMed]

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods”, Science,  283, 1689–1695 (1999).
[CrossRef] [PubMed]

Neuman, K.C.

K.C. Neuman and S.M. Block, “Optical trapping”, Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Onoa, B.

B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
[CrossRef]

Paterson, L.

L. Paterson, M.P. MacDonald, J. Arlt, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[CrossRef] [PubMed]

Peterson, L.

M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
[CrossRef] [PubMed]

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods”, Science,  283, 1689–1695 (1999).
[CrossRef] [PubMed]

Sibbett, W.

B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express,  12, 3011–3017 (2004).
[CrossRef] [PubMed]

M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
[CrossRef] [PubMed]

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods”, Science,  283, 1689–1695 (1999).
[CrossRef] [PubMed]

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods”, Science,  283, 1689–1695 (1999).
[CrossRef] [PubMed]

Smith, S. B.

B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
[CrossRef]

Smith, S.B.

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics”, Nature (London),  421, 423–427 (2003).
[CrossRef]

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods”, Science,  283, 1689–1695 (1999).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Taylor, M.B.

P.T. Korda, M.B. Taylor, and D.G. Grier, “Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers”, Phys. Rev. Lett. 89, 128301-1 (2002).
[CrossRef]

Tinoco, I.

B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
[CrossRef]

van de Ven, T. G. M.

T. G. M. van de Ven. Colloidal Hydrodynamics, (Academic Press, San Diego, 1989).

Volke-Sepulveda, K.

M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
[CrossRef] [PubMed]

Wang, Y. Z.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[CrossRef]

Wei, Q.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[CrossRef]

Xie, C. A.

C. A. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93, 2982–2986 (2003)
[CrossRef]

C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
[CrossRef]

C. A. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27, 249–251 (2002).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987)
[CrossRef] [PubMed]

Zhang, M. H.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
[CrossRef]

J. Appl. Phys. (1)

C. A. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93, 2982–2986 (2003)
[CrossRef]

J. Raman Spectrosc. (1)

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[CrossRef]

Nature (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987)
[CrossRef] [PubMed]

Nature (London) (2)

D. G. Grier, “A revolution in optical manipulation”, Nature (London),  424, 810–816 (2003).
[CrossRef]

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics”, Nature (London),  421, 423–427 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

P.T. Korda, M.B. Taylor, and D.G. Grier, “Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers”, Phys. Rev. Lett. 89, 128301-1 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

K.C. Neuman and S.M. Block, “Optical trapping”, Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Science (5)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods”, Science,  283, 1689–1695 (1999).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science,  235, 1517–1520 (1987)
[CrossRef] [PubMed]

B. Onoa, S. Dumont, J. Liphardt, S. B. Smith, I. Tinoco, and C. Bustamante, “Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme”, Science,  292, 1892–1895 (2003).
[CrossRef]

L. Paterson, M.P. MacDonald, J. Arlt, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[CrossRef] [PubMed]

M.P. MacDonald, L. Peterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science,  296, 1101–1103 (2002).
[CrossRef] [PubMed]

Other (4)

A. A. Ambardekar and Y. Q. Li, Optical levitation and manipulation of stuck particles with pulsed optical tweezers, Opt. Lett. (in print)

T. G. M. van de Ven. Colloidal Hydrodynamics, (Academic Press, San Diego, 1989).

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1965).

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optical regime,” in Methods in Cell Biology, vol.55, M.P. Sheetz, ed. (Academic Press, San Diego, 1998), pp.1–27.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of the pulsed optical tweezers

Fig. 2.
Fig. 2.

(a) The beads were stuck on the surface. (b) The marked bead was levitated with a pulse and moved to the focus.

Fig. 3.
Fig. 3.

The position h of the bead versus time at the different pulse energy. Curve a is for E=1.1×10-5Ns/m; b for E=7×10-7Ns/m; c for E=0.

Fig. 4.
Fig. 4.

The levitation efficiency versus the E with a fixed z0=6µm andτ=45µs.

Fig. 5.
Fig. 5.

The dependence of the levitation efficiency on the displacement z0 with the fixed E=1.1×10-6Ns/m and τ=45µs.

Fig. 6.
Fig. 6.

The dependence of the levitation efficiency on the pulse duration τ with the fixed E=1.1×10-6Ns/m and z0=6µm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , z , t ) = I 0 ω 0 2 ω ( z ) 2 exp ( 2 ( x 2 + y 2 ) ω ( z ) 2 )
+ 2 U τ π ω 0 2 ω ( z ) 2 exp ( ( t τ ) 2 ) exp ( 2 ( x 2 + y 2 ) ω ( z ) 2 ) ,
ω ( z ) = ω 0 ( 1 + ( z z s ) 2 ) 1 2 ,
F cw = k z z ( 1 + ( z z s ) 2 ) 2 ,
F cw = k z z ( 1 + ( z z s ) 2 ) 2 exp ( ( z z s ) 4 )
F pulse = 2 E τ π z ( 1 + ( z z s ) 2 ) 2 exp ( ( t τ ) 2 ) exp ( ( z z s ) 4 )
m z ̈ = F cw + F pulse + F S + F V ,
F V = Aa 6 h 2 f ( p ) ,
F S = 6 π a η λ z ˙ = D z ˙
λ = 1 1 9 8 ( a h + a ) + 1 2 ( a h + a ) 3 .
p { A } = 1 2 π σ e ( A ζ ) 2 2 σ 2 ,
P { A } = 1 2 π σ A e ( t ζ ) 2 2 σ 2 dt = Φ ( A ζ σ ) ,

Metrics