Abstract

We report what we believe to be the first simulation of enhanced backscattering (EBS) of light by numerically solving Maxwell’s equations without heuristic approximations. Our simulation employs the pseudospectral time-domain (PSTD) technique, which we have previously shown enables essentially exact numerical solutions of Maxwell’s equations for light scattering by millimeter-volume random media consisting of micrometer-scale inhomogeneities. We show calculations of EBS peaks of random media in the presence of speckle; in addition, we demonstrate speckle reduction using a frequency-averaging technique. More generally, this new technique is sufficiently robust to permit the study of EBS phenomena for random media of arbitrary geometry not amenable to simulation by other approaches, especially with regard to extension to full-vector electrodynamics in three dimensions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Akkermans and G. Montambaux, "Mesoscopic physics of photons" J. Opt. Soc. Am. B 21, 101-112 (2004).
    [CrossRef]
  2. Y.L. Kim, Y. Liu, V.M. Turzhitsky, H.K. Roy, R.K. Wali, and V. Backman, "Coherent backscattering spectroscopy" Opt. Lett. 29, 1906-1908 (2004).
    [CrossRef] [PubMed]
  3. R. Sapienza, S. Mujumdar, C. Cheung, A.G. Yodh, and D. Wiersma, "Anisotropic weak localization of light" Phys. Rev. Lett. 92 (2004).
    [CrossRef] [PubMed]
  4. G. Labeyrie, D. Delande, C.A. Muller, C. Miniatura, and R. Kaiser, "Coherent backscattering of light by cold atoms: Theory meets experiment" Europhys. Lett. 61, 327-333 (2003).
    [CrossRef]
  5. I.V. Meglinski, V.L. Kuzmin, D.Y. Churmakov, and D.A. Greenhalgh, "Monte Carlo simulation of coherent effects in multiple scattering" Proc. of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 461: 43-53 (2005).
    [CrossRef]
  6. R. Lenke, R. Tweer, and G. Maret, "Coherent backscattering of turbid samples containing large Mie spheres" J. Opt. A 4, 293-298 (2002).
    [CrossRef]
  7. V.L. Kuzmin and I.V. Meglinski, "Coherent multiple scattering effects and Monte Carlo method" JETP Lett. 79, 109-112 (2004).
    [CrossRef]
  8. E. Amic, J.M. Luck, and T.M. Nieuwenhuizen, "Anisotropic multiple scattering in diffusive media" J. Phys. A: Math. Gen. 29, 4915-4955 (1996).
    [CrossRef]
  9. J. Pearce and D.M. Mittleman, "Propagation of single-cycle terahertz pulses in random media" Opt. Lett. 26, 2002-2004 (2001).
    [CrossRef]
  10. M. Haney and R. Snieder, "Breakdown of wave diffusion in 2D due to loops" Phys. Rev. Lett. 91, (2003).
    [CrossRef] [PubMed]
  11. L. Marti-Lopez, J. Bouza-Dominguez, J.C. Hebden, S.R. Arridge, and R.A. Martinez-Celorio, "Validity conditions for the radiative transfer equation" J. Opt. Soc. Am. A 20, 2046-2056 (2003).
    [CrossRef]
  12. Q.H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm" IEEE Transactions on Geoscience and Remote Sensing, 37, 917-926 (1999).
    [CrossRef]
  13. Q.H. Liu, "The PSTD algorithm: A time-domain method requiring only two cells per wavelength" Microwave Opt. Technol. Lett. 15, 158-165 (1997).
    [CrossRef]
  14. S.H. Tseng, J.H. Greene, A. Taflove, D. Maitland, V. Backman, and J.T. Walsh, "Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium" Opt. Lett. 29, 1393-1395 (2004); 30: 56-57 (2005).
    [CrossRef] [PubMed]
  15. S.D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices" IEEE Transactions on Antennas and Propagation, 44: 1630-1639 (1996).
    [CrossRef]
  16. A. Taflove and S.C. Hagness, Computational Electrodynamics: the finite-difference time-domain method. 2000: Artech House. 852.
  17. M. Tomita and H. Ikari, "Influence of Finite Coherence Length of Incoming Light on Enhanced Backscattering" Physical Review B, 43: 3716-3719 (1991).
    [CrossRef]
  18. E. Akkermans, P.E. Wolf, and R. Maynard, "Coherent Backscattering of Light by Disordered Media �?? Analysis of the Peak Line-Shape" Phys. Rev. Lett. 56, 1471-1474 (1986).
    [CrossRef] [PubMed]

Europhys. Lett. (1)

G. Labeyrie, D. Delande, C.A. Muller, C. Miniatura, and R. Kaiser, "Coherent backscattering of light by cold atoms: Theory meets experiment" Europhys. Lett. 61, 327-333 (2003).
[CrossRef]

IEEE Transactions on Antennas and Propag (1)

S.D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices" IEEE Transactions on Antennas and Propagation, 44: 1630-1639 (1996).
[CrossRef]

IEEE Transactions on Geoscience and Remo (1)

Q.H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm" IEEE Transactions on Geoscience and Remote Sensing, 37, 917-926 (1999).
[CrossRef]

J. Opt. A (1)

R. Lenke, R. Tweer, and G. Maret, "Coherent backscattering of turbid samples containing large Mie spheres" J. Opt. A 4, 293-298 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. A: Math. Gen. (1)

E. Amic, J.M. Luck, and T.M. Nieuwenhuizen, "Anisotropic multiple scattering in diffusive media" J. Phys. A: Math. Gen. 29, 4915-4955 (1996).
[CrossRef]

JETP Lett. (1)

V.L. Kuzmin and I.V. Meglinski, "Coherent multiple scattering effects and Monte Carlo method" JETP Lett. 79, 109-112 (2004).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

Q.H. Liu, "The PSTD algorithm: A time-domain method requiring only two cells per wavelength" Microwave Opt. Technol. Lett. 15, 158-165 (1997).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (3)

R. Sapienza, S. Mujumdar, C. Cheung, A.G. Yodh, and D. Wiersma, "Anisotropic weak localization of light" Phys. Rev. Lett. 92 (2004).
[CrossRef] [PubMed]

M. Haney and R. Snieder, "Breakdown of wave diffusion in 2D due to loops" Phys. Rev. Lett. 91, (2003).
[CrossRef] [PubMed]

E. Akkermans, P.E. Wolf, and R. Maynard, "Coherent Backscattering of Light by Disordered Media �?? Analysis of the Peak Line-Shape" Phys. Rev. Lett. 56, 1471-1474 (1986).
[CrossRef] [PubMed]

Physical Review B (1)

M. Tomita and H. Ikari, "Influence of Finite Coherence Length of Incoming Light on Enhanced Backscattering" Physical Review B, 43: 3716-3719 (1991).
[CrossRef]

Proc. of the Royal Society of London (1)

I.V. Meglinski, V.L. Kuzmin, D.Y. Churmakov, and D.A. Greenhalgh, "Monte Carlo simulation of coherent effects in multiple scattering" Proc. of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 461: 43-53 (2005).
[CrossRef]

Other (1)

A. Taflove and S.C. Hagness, Computational Electrodynamics: the finite-difference time-domain method. 2000: Artech House. 852.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

PSTD simulation of the enhanced backscattering (EBS) numerical experiment. With dimensions of 800×400 µm, the rectangular cluster consists of N randomly positioned, non-contacting, infinitely long, dielectric cylinders with refractive index n=1.25; Each cylinder had a diameter of 1.2 µm with an average spacing of s=2.8 µm between cylinders (edge to edge). The rectangular cluster is illuminated by a coherent plane wave that is incident at 15° relative to the normal. Both the incident light and the backscattered light are polarized perpendicular to the plane of incidence, equivalent to collinear detection in EBS experiments. A standard anisotropic perfectly matched layer (APML) absorbing boundary condition is implemented to absorb outgoing waves, simulating a light scattering experiment in free space.

Fig. 2.
Fig. 2.

PSTD-computed enhanced backscattered light (EBS) as a function of backscattering angle. 0° corresponds to direct backscattering at 15° from the normal. (a) Two examples of scattered light intensities, corresponding to two different rectangular clusters each consisting of N=10,000 cylinders, as shown in Fig. 1. (b) Ensemble average of 40 different rectangular clusters, showing a significant amount of speckle that partially obscures the EBS peak. (c) After averaging over 50 closely spaced frequencies, the speckle is significantly reduced and the EBS peak can be clearly seen.

Fig. 3.
Fig. 3.

Comparison of PSTD-computed EBS peaks (solid lines) for three wavelengths with theoretical benchmark results (dash-dotted lines) for rectangular clusters consisting of N cylinders. (a)-(c) correspond to N=10,000 cylinders with ls ’=65.0 µm, 41.5 µm, and 37.7 µm, respectively; (d)-(e) correspond to N=20,000 cylinders with ls ’=32.5 µm, 20.7 µm, and 18.9 µm, respectively. The PSTD calculations are in good agreement with the benchmark theory.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ V x i } = F 1 ( j k ˜ x F { V i } )
α ( θ ) = 3 8 π [ 1 + 2 z 0 l + 1 ( 1 + q l ) 2 ( 1 + 1 exp ( 2 q z 0 ) q l ) ] * SF ( θ )

Metrics