Abstract

We show experimentally the feasibility of optically controlled location, individual addressing/erasure and steering of phase domain walls by injection of coherent addressing pulses into a phase-locked four-wave-mixing photorefractive oscillator.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, (Cambridge University Press, Cambridge, 1997).
    [CrossRef]
  2. K. Staliunas and V.J. Sánchez-Morcillo, Transverse Patterns in Nonlinear Optical Resonators, (Springer, Berlín, 2003).
  3. N.N.Rosanov and G.V.Khodova, "Autosolitons in bistable interferometers," Opt. Spectrosc. 65, 449 (1988).
  4. M.Tlidi, P.Mandel and R.Lefever, �??Localized structures and localized patterns in optical bistability,�?? Phys. Rev. Lett. 73, 640 (1994).
    [CrossRef] [PubMed]
  5. S. Trillo, M. Haelterman, and A. Sheppard, �??Stable Topological Spatial Solitons in Optical Parametric Oscillators,�?? Opt. Lett. 22, 970 (1997).
    [CrossRef] [PubMed]
  6. K. Staliunas and V. J. Sánchez-Morcillo, �??Spatial-Localized Structures in Degenerate Optical Parametric Oscillators,�?? Phys. Rev. A 57, 1454 (1998).
    [CrossRef]
  7. R.Gallego, M.San Miguel, and R.Toral, �??Self-Similar Domain Growth, Localized Structures, and labyrinthine Patterns in Vectorial Kerr Resonators,�?? Phys. Rev. E. 61, 2241 (2000).
    [CrossRef]
  8. V.J. Sánchez-Morcillo, I. Pérez-Arjona, F. Silva, G.J. de Valcárcel, and E. Roldán, �??Vectorial Kerr-cavity Solitons,�?? Opt. Lett. 25, 957 (2000).
    [CrossRef]
  9. V.B. Taranenko, K. Staliunas, and C.O. Weiss, �??Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,�?? Phys. Rev. A 56, 1582 (1997).
    [CrossRef]
  10. G. Slekys, K.Staliunas, and C.O. Weiss, �??Spatial Solitons in Optical Photorefractive Oscillators with saturable Absorber,�?? Opt. Commun. 149, 113 (1998).
    [CrossRef]
  11. B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, �??Interaction of localized structures in an optical pattern forming system,�?? Phys. Rev. Lett. 85, 748 (2000).
    [CrossRef] [PubMed]
  12. V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, �??Patterns and localized structures in bistable semiconductor resonators,�?? Phys. Rev. A 61, 063818 (2000).
    [CrossRef]
  13. V.B. Taranenko, F.-J. Ahlers, and K. Pierz, �??Coherent switching of semiconductor resonator solitons,�?? Appl. Phys. B 75, 75 (2002).
    [CrossRef]
  14. S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Millerk, and R. Jaeger, �??Cavity solitons as pixels in semiconductor microcavities,�?? Nature 419, 699 (2002).
    [CrossRef] [PubMed]
  15. G.S. McDonald and W.J. Firth, �??Spatial solitary wave optical memory,�?? J. Opt. Soc. Am. B 7, 1328 (1990).
    [CrossRef]
  16. P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerowicz, �??Breaking chirality in nonequilibrium systems,�?? Phys. Rev. Lett. 65, 1352 (1990).
    [CrossRef] [PubMed]
  17. A. Esteban-Martín, V. B. Taranenko, J. García, G. J. de Valcárcel, and Eugenio Roldán, �??Controlled observation of a nonequilibrium Ising-Bloch transition in a nonlinear optical cavity,�?? Phys. Rev. Lett. (to appear); also at <a href="http://arxiv.org/abs/nlin.PS/0411048.">http://arxiv.org/abs/nlin.PS/0411048.</a>
    [PubMed]
  18. V. B. Taranenko, K. Staliunas, and C. O. Weiss, �??Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing,�?? Phys. Rev. Lett. 81, 2236 (1998).
    [CrossRef]
  19. Y. Larionova, U. Peschel, A. Esteban-Martín, J. García-Monreal, and C.O. Weiss, �??Ising and Bloch walls of phase domains in two-dimensional parametric wave mixing,�?? Phys. Rev. A 69, 033803 (2004).
    [CrossRef]
  20. A. Esteban-Martín, J. García, E. Roldán, V.B. Taranenko, G.J. de Valcárcel, and C.O. Weiss, �??Experimental approach to transverse wavenumber selection in cavity nonlinear optics,�?? Phys. Rev A 69, 033816 (2004).
    [CrossRef]

Appl. Phys. B (1)

V.B. Taranenko, F.-J. Ahlers, and K. Pierz, �??Coherent switching of semiconductor resonator solitons,�?? Appl. Phys. B 75, 75 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Millerk, and R. Jaeger, �??Cavity solitons as pixels in semiconductor microcavities,�?? Nature 419, 699 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Slekys, K.Staliunas, and C.O. Weiss, �??Spatial Solitons in Optical Photorefractive Oscillators with saturable Absorber,�?? Opt. Commun. 149, 113 (1998).
[CrossRef]

Opt. Lett. (2)

Opt. Spectrosc. (1)

N.N.Rosanov and G.V.Khodova, "Autosolitons in bistable interferometers," Opt. Spectrosc. 65, 449 (1988).

Phys. Rev A (1)

A. Esteban-Martín, J. García, E. Roldán, V.B. Taranenko, G.J. de Valcárcel, and C.O. Weiss, �??Experimental approach to transverse wavenumber selection in cavity nonlinear optics,�?? Phys. Rev A 69, 033816 (2004).
[CrossRef]

Phys. Rev. A (4)

K. Staliunas and V. J. Sánchez-Morcillo, �??Spatial-Localized Structures in Degenerate Optical Parametric Oscillators,�?? Phys. Rev. A 57, 1454 (1998).
[CrossRef]

V.B. Taranenko, K. Staliunas, and C.O. Weiss, �??Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,�?? Phys. Rev. A 56, 1582 (1997).
[CrossRef]

V.B. Taranenko, I. Ganne, R. Kuszelewicz, and C.O. Weiss, �??Patterns and localized structures in bistable semiconductor resonators,�?? Phys. Rev. A 61, 063818 (2000).
[CrossRef]

Y. Larionova, U. Peschel, A. Esteban-Martín, J. García-Monreal, and C.O. Weiss, �??Ising and Bloch walls of phase domains in two-dimensional parametric wave mixing,�?? Phys. Rev. A 69, 033803 (2004).
[CrossRef]

Phys. Rev. E. (1)

R.Gallego, M.San Miguel, and R.Toral, �??Self-Similar Domain Growth, Localized Structures, and labyrinthine Patterns in Vectorial Kerr Resonators,�?? Phys. Rev. E. 61, 2241 (2000).
[CrossRef]

Phys. Rev. Lett. (5)

P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerowicz, �??Breaking chirality in nonequilibrium systems,�?? Phys. Rev. Lett. 65, 1352 (1990).
[CrossRef] [PubMed]

A. Esteban-Martín, V. B. Taranenko, J. García, G. J. de Valcárcel, and Eugenio Roldán, �??Controlled observation of a nonequilibrium Ising-Bloch transition in a nonlinear optical cavity,�?? Phys. Rev. Lett. (to appear); also at <a href="http://arxiv.org/abs/nlin.PS/0411048.">http://arxiv.org/abs/nlin.PS/0411048.</a>
[PubMed]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, �??Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing,�?? Phys. Rev. Lett. 81, 2236 (1998).
[CrossRef]

B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, �??Interaction of localized structures in an optical pattern forming system,�?? Phys. Rev. Lett. 85, 748 (2000).
[CrossRef] [PubMed]

M.Tlidi, P.Mandel and R.Lefever, �??Localized structures and localized patterns in optical bistability,�?? Phys. Rev. Lett. 73, 640 (1994).
[CrossRef] [PubMed]

Other (2)

P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, (Cambridge University Press, Cambridge, 1997).
[CrossRef]

K. Staliunas and V.J. Sánchez-Morcillo, Transverse Patterns in Nonlinear Optical Resonators, (Springer, Berlín, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of one-dimensional phase (upper row) and amplitude (bottom) cavity solitons. The field amplitude is denoted by u (assumed to be real for simplicity). The transverse spatial coordinates are (x,y). Phase solitons (domain walls) connect two states with equal amplitude but opposite phase: they are heteroclinic connections. Amplitude solitons connect the same state (homoclinic connection) by making an excursion to another state. Right column: Density plot of the solitons intensity u 2 on the transverse plane showing that domain walls show up as dark lines.

Fig. 2.
Fig. 2.

Sketch of the experimental setup (the same as in [20] but for the beam injection): Degenerate four-wave-mixing BaTiO3 photorefractive oscillator. PM1 and M, are the cavity plane mirrors. There are four intracavity lenses L1 (focal length f) arranged in near self-imaging configuration. D is an iris (or a slit) diaphragm D. The cavity length is actively stabilized and tuned by means of the piezo-mirror PM1. The mechanical shutter admits for a while a sharply focused (by lens L2) injection beam into the cavity for local illumination of a small area of the crystal. The phase of the injected beam is controlled by piezo-moveable mirror PM2.. The active stabilizaton mechanism is not shown, see [20] for more details.

Fig. 3.
Fig. 3.

Experimental demonstration of writing (left column), erasing (central column) and locating (right column) of a double DW structure. Initial stable homogeneous state (a) and double DW structure (d), injection of writing (b) and erasing (e) laser beams, final double DW structure (c) and homogeneous state (f) persistent after the writing/erasing beam is blocked. Location and pinning of double DW at fixed positions of the cross section (g), (h) and (i) by writing laser pulses addressed at different places. The horizontal dimension is 1.6 mm

Fig. 4.
Fig. 4.

Annihilation of closely located DWs giving experimental evidence for the existence of a critical equilibrium distance between two DWs. If the second double DW structure is injected too close to the first one, the interaction produces the annihilation of the inner walls (right column). Nevertheless, if the distance is large enough, the writing of the second DW is allowed and the double DW remains static (left column).

Fig. 5.
Fig. 5.

Shift of double DW occurred in an amplitude gradient created by the external focused beam coaxially injected into the cavity and illuminate permanently small area of the cross section near left DW (a).

Fig. 6.
Fig. 6.

Switching off individual domains (double-DW structures) in DW clusters with the erasing laser pulses aimed at different places. Initial (a) 4-DW cluster and (e) 6-DW cluster. DW structures after switching off the central (b, f), right (c, d) and left domain (d, h).

Fig. 7.
Fig. 7.

Static Ising-type DWs (left) and moving Bloch-type DWs (right). Time runs from top to bottom in 5 s steps.

Metrics