Abstract

The local perturbation of a diffraction-limited spot by a nanometer sized gold tip in a popular apertureless scanning near-field optical microscopy (ASNOM) configuration is reproduced through topography changes in a photoresponsive polymer. Our method relies on the observation of the photochemical migration of azobenzene molecules grafted to a polymer placed beneath the tip. A local molecular displacement has been shown to be activated by a gold tip as a consequence of the lateral surface charge density present at the edges of the tip’s end, resulting from a strong near-field depolarization predicted by theory.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches

Lewis Gomez, Renaud Bachelot, Alexandre Bouhelier, Gary P. Wiederrecht, Shih-hui Chang, Stephen K. Gray, Feng Hua, Seokwoo Jeon, John A. Rogers, Miguel E. Castro, Sylvain Blaize, Ilan Stefanon, Gilles Lerondel, and Pascal Royer
J. Opt. Soc. Am. B 23(5) 823-833 (2006)

Sub-wavelength patterning of the optical near-field

Romain Quidant, Gonçal Badenes, Stéphanie Cheylan, Ramon Alcubilla, Jean-Claude Weeber, and Christian Girard
Opt. Express 12(2) 282-287 (2004)

High efficiency plasmonic probe design for parallel near-field optics applications

Guanghao Rui, Weibin Chen, and Qiwen Zhan
Opt. Express 19(6) 5187-5195 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
    [Crossref] [PubMed]
  2. F. Zenhausern, M.P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [Crossref]
  3. R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 201924–1926 (1995).
    [Crossref] [PubMed]
  4. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interactions at the nanoscale,” Nature 418, 159–162 (2002).
    [Crossref] [PubMed]
  5. G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B. 107, 1419–14198 (2003).
    [Crossref]
  6. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
    [Crossref]
  7. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).
    [Crossref]
  8. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801/1–220801/4 (2004).
    [Crossref]
  9. A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 13903/1–13903/4 (2003).
    [Crossref]
  10. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
    [Crossref] [PubMed]
  11. R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
    [Crossref]
  12. R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
    [Crossref]
  13. J. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
    [Crossref]
  14. L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beam,” Ultramicroscopy 71, 21–29 (1998).
    [Crossref]
  15. A. Taflove and S. C. Hagness Computational Electrodynamics. The finite difference time-domain method. 2nd EditionArtech House Boston, 2000.
  16. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [Crossref]
  17. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
    [Crossref]
  18. Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
    [Crossref]

2004 (2)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801/1–220801/4 (2004).
[Crossref]

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

2003 (5)

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 13903/1–13903/4 (2003).
[Crossref]

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B. 107, 1419–14198 (2003).
[Crossref]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

2002 (2)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
[Crossref] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interactions at the nanoscale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

2000 (1)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

1999 (1)

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

1998 (1)

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beam,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

1995 (2)

J. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[Crossref]

R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 201924–1926 (1995).
[Crossref] [PubMed]

1994 (2)

F. Zenhausern, M.P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[Crossref] [PubMed]

Bachelot, R.

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 201924–1926 (1995).
[Crossref] [PubMed]

Barchiesi, D.

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 13903/1–13903/4 (2003).
[Crossref]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Boccara, A. C.

Boilot, G. P.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 13903/1–13903/4 (2003).
[Crossref]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

Chaput, F.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Deckert, V.

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

El-Sayed, M. A.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

Fikri, R.

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Fokas, Ch.

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

Gilbert, Y.

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

Gleyzes, P.

Gray, S. K.

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B. 107, 1419–14198 (2003).
[Crossref]

Grober, R. D.

J. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[Crossref]

H’Dhili, F.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness Computational Electrodynamics. The finite difference time-domain method. 2nd EditionArtech House Boston, 2000.

Hartschuh, A.

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 13903/1–13903/4 (2003).
[Crossref]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).
[Crossref]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801/1–220801/4 (2004).
[Crossref]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801/1–220801/4 (2004).
[Crossref]

Hecht, B.

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

Hillenbrand, R.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interactions at the nanoscale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801/1–220801/4 (2004).
[Crossref]

Im, J. S.

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B. 107, 1419–14198 (2003).
[Crossref]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801/1–220801/4 (2004).
[Crossref]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[Crossref] [PubMed]

Karrai, J. K.

J. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[Crossref]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801/1–220801/4 (2004).
[Crossref]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[Crossref] [PubMed]

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interactions at the nanoscale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Lahli, K.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Lampel, G.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Landraud, N.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Lerondel, G.

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
[Crossref] [PubMed]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

Novotny, L.

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 13903/1–13903/4 (2003).
[Crossref]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).
[Crossref]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beam,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

O’Boyle, M.P.

F. Zenhausern, M.P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Peretti, J.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
[Crossref] [PubMed]

Royer, P.

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Ruymantseva, A.

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

Sanchez, E. J.

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).
[Crossref]

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beam,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

Sick, B.

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

Stoeckle, R.

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness Computational Electrodynamics. The finite difference time-domain method. 2nd EditionArtech House Boston, 2000.

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interactions at the nanoscale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Wickramasinghe, H. K.

F. Zenhausern, M.P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Wiederrecht, G. P.

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B. 107, 1419–14198 (2003).
[Crossref]

Wild, U.P.

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

Wurtz, G. A.

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B. 107, 1419–14198 (2003).
[Crossref]

Xie, X. S.

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).
[Crossref]

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beam,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Zenhausern, F.

F. Zenhausern, M.P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Zenobi, R.

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

Appl. Phys. Lett. (4)

F. Zenhausern, M.P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[Crossref]

R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U.P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett.,  75, 160–162 (1999).
[Crossref]

J. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[Crossref]

Chem. Rev. (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4175 (2002).
[Crossref] [PubMed]

J. Appl. Phys. (1)

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G. P. Boilot, and K. Lahli, “Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

J. Phys. Chem. B (1)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[Crossref]

J. Phys. Chem. B. (1)

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B. 107, 1419–14198 (2003).
[Crossref]

Macromol. (1)

Y. Gilbert, R. Fikri, A. Ruymantseva, G. Lerondel, R. Bachelot, D. Barchiesi, and P. Royer, “High-resolution nanophotolithography in atomic force microscopy contact mode,” Macromol. 37, 3780–3791 (2004).
[Crossref]

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interactions at the nanoscale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (4)

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503/1–095503/4 (2003).
[Crossref]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801/1–220801/4 (2004).
[Crossref]

A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 13903/1–13903/4 (2003).
[Crossref]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Ultramicroscopy (1)

L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beam,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

Other (1)

A. Taflove and S. C. Hagness Computational Electrodynamics. The finite difference time-domain method. 2nd EditionArtech House Boston, 2000.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental arrangement for recording the local perturbation induced in a diffraction-limited spot by an ASNOM probe. Inset: SEM image of a gold tip (b) isomerization of the azobenzenic molecule.

Fig. 2.
Fig. 2.

AFM images of the polymer surface taken after the exposure. The white arrows correspond to the incident polarization (a), (b): exposure without any tip. Note that there is no change in images (a) or (b) in the presence of a glass tip. Inset in (a): array of dots written under the same condition as for (a). (c)-(f): exposure with a gold tip placed in the focal spot. (e) and (f) are smaller scan areas of the focal regions (c) and (d). The dashed circle in Figs. 2(c)-(f) highlight the near-field response of the polymer when the tip is present.

Fig. 3.
Fig. 3.

Calculated amplitude of the different field components on the polymer surface beneath a 40 nm radius tip. (a) geometry of the problem. (b) to (d): case of the gold tip. (e) to (g): case of the glass tip. The size of the calculated images is 300×250 nm2.

Fig. 4.
Fig. 4.

(a) Experimental topography profile along the pattern of Fig. 2(d) without the presence of the tip. (b) Experimental topography profile in the presence of the metal tip extracted from Fig. 2(f). The red single and double solid arrows represent the different orientation of the electric field components Ex and Ez, respectively. The dotted blue arrows indicate the corresponding response of the polymer to the electric field components.

Metrics