Abstract

We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1µm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3×104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R.G. Pinnick, S.C. Hill, P. Nachman, J.D. Pendleton, G.L. Fernandez, M.W. Mayo, and J.G. Bruno, �??Fluorescent particle counter for detecting airborne bacteria and other biological particles,�?? Aerosol Sci. Tech. 23, 4, 653-664 (1995).
    [CrossRef]
  2. P.P. Hairston, J. Ho, and F.R. Quant, �??Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,�?? J. Aerosol Sci. 28, 3, 471-480 (1997).
    [CrossRef]
  3. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, �??Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation,�?? Opt. Lett. 21, 1307�??1309 (1996).
    [CrossRef] [PubMed]
  4. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, Jr., and D. C. Roselle, �??Size and fluorescence measurements for field detection of biological aerosols,�?? Aerosol Sci. Technol. 30, 174�??185 (1999).
    [CrossRef]
  5. F.L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, �??Bio-aerosol fluorescence sensor,�?? Field Anal. Chem. and Technol. 3(4-5), 240-248 (1999).
    [CrossRef]
  6. Y-L Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles and J. R. Bottiger, �??Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,�?? Opt. Lett. 24, 116-119 (1999).
    [CrossRef]
  7. Y-L Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, J-P Wolf, �??Highspeed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,�?? Rev. Sci. Instrum. 72, 3, 1831-1836 (2001).
    [CrossRef]
  8. Y-L Pan, J. Hartings, R. G. Pinnick, S. C. Hills, J. Halverson and R. K. Chang, �??Single particle fluorescence spectrometer for ambient aerosols,�?? Aerosol Sci. Tech., 37, 628-639 (2003).
    [CrossRef]
  9. P.H. Kaye, J.E. Barton , E. Hirst , and J.M. Clark; �??Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,�?? Appl. Opt. 39, 21, 3738-3745 (2000).
    [CrossRef]
  10. V. E. Foot, J. M. Clark, K. L. Baxter, and N. Close, �??Characterising single airborne particles by fluorescence emission and spatial analysis of elastic scattered light,�?? in Optically Based Biological and Chemical Sensing for Defence. J. C. Carrano and A. Zukauskas, eds. Proc. SPIE 5617, 292-299 (2004).
  11. SUVOS �?? Semiconductor Ultraviolet Optical Sources, J. C. Carrano, Director, <a href= "http://www.darpa.mil/mto/suvos/ (2002)">http://www.darpa.mil/mto/suvos/ (2002)</a>.
  12. T.H. Jeys, L. Desmarais, E. J. Lynch, and J.R. Ochoa; �??Development of a UV LED based biosensor,�?? in Sensors and Command, Control, and Intelligence Technologies for Homeland Defense and Law Enforcement. E.M. Carrapezza, ed. SPIE 5071, 234-240 (2003).
  13. P. H. Kaye, E. Hirst, V. E. Foot, J. M. Clark and K. Baxter, �??A low-cost multichannel aerosol fluorescence sensor for networked deployment,�?? in Optically Based Biological and Chemical Sensing for Defence. J. C. Carrano and A. Zukauskas, eds. Proc. SPIE 5617, 388-398 (2004).
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Aerosol Sci. Tech. (2)

Y-L Pan, J. Hartings, R. G. Pinnick, S. C. Hills, J. Halverson and R. K. Chang, �??Single particle fluorescence spectrometer for ambient aerosols,�?? Aerosol Sci. Tech., 37, 628-639 (2003).
[CrossRef]

R.G. Pinnick, S.C. Hill, P. Nachman, J.D. Pendleton, G.L. Fernandez, M.W. Mayo, and J.G. Bruno, �??Fluorescent particle counter for detecting airborne bacteria and other biological particles,�?? Aerosol Sci. Tech. 23, 4, 653-664 (1995).
[CrossRef]

Aerosol Sci. Technol. (1)

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, Jr., and D. C. Roselle, �??Size and fluorescence measurements for field detection of biological aerosols,�?? Aerosol Sci. Technol. 30, 174�??185 (1999).
[CrossRef]

Appl. Opt. (1)

Field Anal. Chem. and Technol. (1)

F.L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, �??Bio-aerosol fluorescence sensor,�?? Field Anal. Chem. and Technol. 3(4-5), 240-248 (1999).
[CrossRef]

J. Aerosol Sci. (1)

P.P. Hairston, J. Ho, and F.R. Quant, �??Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,�?? J. Aerosol Sci. 28, 3, 471-480 (1997).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

V. E. Foot, J. M. Clark, K. L. Baxter, and N. Close, �??Characterising single airborne particles by fluorescence emission and spatial analysis of elastic scattered light,�?? in Optically Based Biological and Chemical Sensing for Defence. J. C. Carrano and A. Zukauskas, eds. Proc. SPIE 5617, 292-299 (2004).

P. H. Kaye, E. Hirst, V. E. Foot, J. M. Clark and K. Baxter, �??A low-cost multichannel aerosol fluorescence sensor for networked deployment,�?? in Optically Based Biological and Chemical Sensing for Defence. J. C. Carrano and A. Zukauskas, eds. Proc. SPIE 5617, 388-398 (2004).

Rev. Sci. Instrum. (1)

Y-L Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, J-P Wolf, �??Highspeed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,�?? Rev. Sci. Instrum. 72, 3, 1831-1836 (2001).
[CrossRef]

SPIE (1)

T.H. Jeys, L. Desmarais, E. J. Lynch, and J.R. Ochoa; �??Development of a UV LED based biosensor,�?? in Sensors and Command, Control, and Intelligence Technologies for Homeland Defense and Law Enforcement. E.M. Carrapezza, ed. SPIE 5071, 234-240 (2003).

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

SUVOS �?? Semiconductor Ultraviolet Optical Sources, J. C. Carrano, Director, <a href= "http://www.darpa.mil/mto/suvos/ (2002)">http://www.darpa.mil/mto/suvos/ (2002)</a>.

Supplementary Material (2)

» Media 1: MOV (2378 KB)     
» Media 2: MOV (2119 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic layout of WIBS2 sensor and the actual sensor itself, approximately (26×22×28) cm in size.

Fig. 2.
Fig. 2.

Cross-section of xenon UV pulse at the particle target region (black dashed ellipse) just below the scattering volume, as viewed from the xenon source.

Fig. 3.
Fig. 3.

Ray diagram showing fluorescence collection for one fluorescence detection channel (Mirror for second channel shown as dotted line).

Fig. 4.
Fig. 4.

Spectral outputs of the WIBS2 xenon sources Xe1 and Xe2

Fig. 5.
Fig. 5.

Fluorescence detection bands for FL1 (left) and FL2 (right) channels. In each case, the dotted line represents the responsivity of the PMT detector, the dashed line the long-pass filter used, and the solid line the resultant fluorescence pass-band.

Fig. 6.
Fig. 6.

Example of FL1 and FL2 detector signals resulting from the passage of a 3 µm PSL sphere through the scattering volume. (See text for explanation of numbering).

Fig. 7.
Fig. 7.

(2.1 MB) Movie of preliminary WIBS2 data from test aerosol materials.

Fig. 8.
Fig. 8.

(2.38 MB) Movie of WIBS2 preliminary data recorded from a variety of biological and non-biological aerosols.

Tables (1)

Tables Icon

Table 1. Notation used in WIBS2 data analysis.

Metrics