Abstract

We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. R.G. Pinnick, S.C. Hill, P. Nachman, J.D. Pendleton, G.L. Fernandez, M.W. Mayo, and J.G. Bruno, �??Fluorescent particle counter for detecting airborne bacteria and other biological particles,�?? Aerosol Sci. Tech. 23, 4, 653-664 (1995).
  2. P.P. Hairston, J. Ho, and F.R. Quant, �??Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,�?? J. Aerosol Sci. 28, 3, 471-480 (1997).
  3. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, �??Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation,�?? Opt. Lett. 21, 1307�??1309 (1996).
  4. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, Jr., and D. C. Roselle, �??Size and fluorescence measurements for field detection of biological aerosols,�?? Aerosol Sci. Technol. 30, 174�??185 (1999).
    [CrossRef]
  5. F.L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, �??Bio-aerosol fluorescence sensor,�?? Field Anal. Chem. and Technol. 3(4-5), 240-248 (1999).
  6. Y-L Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles and J. R. Bottiger, �??Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or 266-nm ultraviolet laser,�?? Opt. Lett. 24, 116-119 (1999).
  7. Y-L Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, J-P Wolf, �??Highspeed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,�?? Rev. Sci. Instrum. 72, 3, 1831-1836 (2001).
    [CrossRef]
  8. Y-L Pan, J. Hartings, R. G. Pinnick, S. C. Hills, J. Halverson and R. K. Chang, �??Single particle fluorescence spectrometer for ambient aerosols,�?? Aerosol Sci. Tech., 37, 628-639 (2003).
    [CrossRef]
  9. P.H. Kaye, J.E. Barton , E. Hirst , and J.M. Clark; �??Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,�?? Appl. Opt. 39, 21, 3738-3745 (2000).
  10. V. E. Foot, J. M. Clark, K. L. Baxter, and N. Close, �??Characterising single airborne particles by fluorescence emission and spatial analysis of elastic scattered light,�?? in Optically Based Biological and Chemical Sensing for Defence. J. C. Carrano and A. Zukauskas, eds. Proc. SPIE 5617, 292-299 (2004).
  11. SUVOS �?? Semiconductor Ultraviolet Optical Sources, J. C. Carrano, Director, <a href= "http://www.darpa.mil/mto/suvos/ (2002)">http://www.darpa.mil/mto/suvos/ (2002)</a>.
  12. T.H. Jeys, L. Desmarais, E. J. Lynch, and J.R. Ochoa; �??Development of a UV LED based biosensor,�?? in Sensors and Command, Control, and Intelligence Technologies for Homeland Defense and Law Enforcement. E.M. Carrapezza, ed. SPIE 5071, 234-240 (2003).
  13. P. H. Kaye, E. Hirst, V. E. Foot, J. M. Clark and K. Baxter, �??A low-cost multichannel aerosol fluorescence sensor for networked deployment,�?? in Optically Based Biological and Chemical Sensing for Defence. J. C. Carrano and A. Zukauskas, eds. Proc. SPIE 5617, 388-398 (2004).
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Aerosol Sci. Tech. (2)

R.G. Pinnick, S.C. Hill, P. Nachman, J.D. Pendleton, G.L. Fernandez, M.W. Mayo, and J.G. Bruno, �??Fluorescent particle counter for detecting airborne bacteria and other biological particles,�?? Aerosol Sci. Tech. 23, 4, 653-664 (1995).

Y-L Pan, J. Hartings, R. G. Pinnick, S. C. Hills, J. Halverson and R. K. Chang, �??Single particle fluorescence spectrometer for ambient aerosols,�?? Aerosol Sci. Tech., 37, 628-639 (2003).
[CrossRef]

Aerosol Sci. Technol. (1)

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, Jr., and D. C. Roselle, �??Size and fluorescence measurements for field detection of biological aerosols,�?? Aerosol Sci. Technol. 30, 174�??185 (1999).
[CrossRef]

Appl. Opt. (1)

Field Anal. Chem. and Technol. (1)

F.L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, �??Bio-aerosol fluorescence sensor,�?? Field Anal. Chem. and Technol. 3(4-5), 240-248 (1999).

J. Aerosol Sci. (1)

P.P. Hairston, J. Ho, and F.R. Quant, �??Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,�?? J. Aerosol Sci. 28, 3, 471-480 (1997).

Opt. Lett. (2)

Proc. SPIE (2)

P. H. Kaye, E. Hirst, V. E. Foot, J. M. Clark and K. Baxter, �??A low-cost multichannel aerosol fluorescence sensor for networked deployment,�?? in Optically Based Biological and Chemical Sensing for Defence. J. C. Carrano and A. Zukauskas, eds. Proc. SPIE 5617, 388-398 (2004).

V. E. Foot, J. M. Clark, K. L. Baxter, and N. Close, �??Characterising single airborne particles by fluorescence emission and spatial analysis of elastic scattered light,�?? in Optically Based Biological and Chemical Sensing for Defence. J. C. Carrano and A. Zukauskas, eds. Proc. SPIE 5617, 292-299 (2004).

Rev. Sci. Instrum. (1)

Y-L Pan, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, J-P Wolf, �??Highspeed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector,�?? Rev. Sci. Instrum. 72, 3, 1831-1836 (2001).
[CrossRef]

SPIE (1)

T.H. Jeys, L. Desmarais, E. J. Lynch, and J.R. Ochoa; �??Development of a UV LED based biosensor,�?? in Sensors and Command, Control, and Intelligence Technologies for Homeland Defense and Law Enforcement. E.M. Carrapezza, ed. SPIE 5071, 234-240 (2003).

Other (2)

SUVOS �?? Semiconductor Ultraviolet Optical Sources, J. C. Carrano, Director, <a href= "http://www.darpa.mil/mto/suvos/ (2002)">http://www.darpa.mil/mto/suvos/ (2002)</a>.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Supplementary Material (2)

» Media 1: MOV (2378 KB)     
» Media 2: MOV (2119 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics