Abstract

We demonstrate experimentally that it is possible to control optically the group velocity of an optical pulse as it travels along an optical fiber. To achieve this control we use the effect of Stimulated Brillouin Scattering. In our experiments we have achieved changes in the group index of 10-3 in several kilometer-length fibers, thus leading to pulse delaying and advancement in the range of tens of nanoseconds. We believe that this is the first evidence of such optically-controlled strong delay changes in optical fibers. In this paper we derive the basic theory behind these group-delay changes and we demonstrate the effect in two kinds of fibers which are conventionally used.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W.  Boyd, D. J.  Gauthier, “‘Slow’ and ‘Fast’ Light,” Ch. 6 in Progress in Optics 43, E.  Wolf, Ed. (Elsevier, Amsterdam, 2002), 497–530.
    [CrossRef]
  2. L. V.  Hau, S. E.  Harris, Z.  Dutton, C. H.  Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  3. M. D.  Stenner, D. J.  Gauthier, M. A.  Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695–698 (2003).
    [CrossRef] [PubMed]
  4. M. S.  Bigelow, N. N.  Lepeshkin, R. W.  Boyd, “Superluminal and Slow-light propagation in a roomtemperature solid,” Science 301, 200–202 (2003).
    [CrossRef] [PubMed]
  5. D. J.  Gauthier, “Physics and Applications of “Slow” Light,” 2nd Annual Summer School, Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, NC, July 27, 2004.
  6. G. P.  Agrawal, “Nonlinear Fiber Optics,” 2nd Ed., (Academic Press, San Diego CA, 1995).
  7. M.  Niklès, L.  Thévenaz, Ph.  Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol., LT-15, 1842–1851 (1997).
    [CrossRef]

2003

M. D.  Stenner, D. J.  Gauthier, M. A.  Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695–698 (2003).
[CrossRef] [PubMed]

M. S.  Bigelow, N. N.  Lepeshkin, R. W.  Boyd, “Superluminal and Slow-light propagation in a roomtemperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

2002

R. W.  Boyd, D. J.  Gauthier, “‘Slow’ and ‘Fast’ Light,” Ch. 6 in Progress in Optics 43, E.  Wolf, Ed. (Elsevier, Amsterdam, 2002), 497–530.
[CrossRef]

1999

L. V.  Hau, S. E.  Harris, Z.  Dutton, C. H.  Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1997

M.  Niklès, L.  Thévenaz, Ph.  Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol., LT-15, 1842–1851 (1997).
[CrossRef]

Agrawal, G. P.

G. P.  Agrawal, “Nonlinear Fiber Optics,” 2nd Ed., (Academic Press, San Diego CA, 1995).

Behroozi, C. H.

L. V.  Hau, S. E.  Harris, Z.  Dutton, C. H.  Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

M. S.  Bigelow, N. N.  Lepeshkin, R. W.  Boyd, “Superluminal and Slow-light propagation in a roomtemperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

M. S.  Bigelow, N. N.  Lepeshkin, R. W.  Boyd, “Superluminal and Slow-light propagation in a roomtemperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

R. W.  Boyd, D. J.  Gauthier, “‘Slow’ and ‘Fast’ Light,” Ch. 6 in Progress in Optics 43, E.  Wolf, Ed. (Elsevier, Amsterdam, 2002), 497–530.
[CrossRef]

Dutton, Z.

L. V.  Hau, S. E.  Harris, Z.  Dutton, C. H.  Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Gauthier, D. J.

M. D.  Stenner, D. J.  Gauthier, M. A.  Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695–698 (2003).
[CrossRef] [PubMed]

R. W.  Boyd, D. J.  Gauthier, “‘Slow’ and ‘Fast’ Light,” Ch. 6 in Progress in Optics 43, E.  Wolf, Ed. (Elsevier, Amsterdam, 2002), 497–530.
[CrossRef]

D. J.  Gauthier, “Physics and Applications of “Slow” Light,” 2nd Annual Summer School, Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, NC, July 27, 2004.

Harris, S. E.

L. V.  Hau, S. E.  Harris, Z.  Dutton, C. H.  Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V.  Hau, S. E.  Harris, Z.  Dutton, C. H.  Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Lepeshkin, N. N.

M. S.  Bigelow, N. N.  Lepeshkin, R. W.  Boyd, “Superluminal and Slow-light propagation in a roomtemperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Neifeld, M. A.

M. D.  Stenner, D. J.  Gauthier, M. A.  Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695–698 (2003).
[CrossRef] [PubMed]

Niklès, M.

M.  Niklès, L.  Thévenaz, Ph.  Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol., LT-15, 1842–1851 (1997).
[CrossRef]

Robert, Ph.

M.  Niklès, L.  Thévenaz, Ph.  Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol., LT-15, 1842–1851 (1997).
[CrossRef]

Stenner, M. D.

M. D.  Stenner, D. J.  Gauthier, M. A.  Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695–698 (2003).
[CrossRef] [PubMed]

Thévenaz, L.

M.  Niklès, L.  Thévenaz, Ph.  Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol., LT-15, 1842–1851 (1997).
[CrossRef]

Ch. 6 in Progress in Optics

R. W.  Boyd, D. J.  Gauthier, “‘Slow’ and ‘Fast’ Light,” Ch. 6 in Progress in Optics 43, E.  Wolf, Ed. (Elsevier, Amsterdam, 2002), 497–530.
[CrossRef]

J. Lightwave Technol.

M.  Niklès, L.  Thévenaz, Ph.  Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol., LT-15, 1842–1851 (1997).
[CrossRef]

Nature

L. V.  Hau, S. E.  Harris, Z.  Dutton, C. H.  Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

M. D.  Stenner, D. J.  Gauthier, M. A.  Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425, 695–698 (2003).
[CrossRef] [PubMed]

Science

M. S.  Bigelow, N. N.  Lepeshkin, R. W.  Boyd, “Superluminal and Slow-light propagation in a roomtemperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Other

D. J.  Gauthier, “Physics and Applications of “Slow” Light,” 2nd Annual Summer School, Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, NC, July 27, 2004.

G. P.  Agrawal, “Nonlinear Fiber Optics,” 2nd Ed., (Academic Press, San Diego CA, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Relation between the phase constant (n ), the attenuation constant (n ) and the group index (ng ) around the absorption peak centered at ω0.

Fig. 2-(a)
Fig. 2-(a)

Group index variation according to frequency deviation from Brillouin frequency. The gain is 20dB when Δν=0

Fig. 2-(b)
Fig. 2-(b)

Delay time as a function of Brillouin gain..

Fig. 3.
Fig. 3.

Configuration to measure variable pulse delay from SBS in an optical fiber

Fig. 4.
Fig. 4.

Traces of the probe pulses for different Brillouin gains (standard fiber), showing a clear delay due to the modified group velocity.

Fig. 5.
Fig. 5.

Delay time of the pulse as a function of the Brillouin gain. In a gain situation the pulse is delayed while it is accelerated in a loss configuration.

Fig. 6.
Fig. 6.

Delay time of the probe pulse as a function of the modulation frequency deviation (Δν) from νB. The pump and the probe powers were fixed.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A p dz = g B 2 A eff A s 2 1 2 j ( Δ v Δ v B ) A p α 2 A p
d A s dz = g B 2 A eff A p 2 1 + 2 j ( Δ v Δ v B ) A s + α 2 A s
Δ β = Im ( g B 2 A eff P p 1 + 2 j ( Δ v Δ v B ) )
v g = ( d β d ω ) 1
n g = n p + ω d n p d ω
Δ t = n g L c

Metrics