Abstract

The deposition of an overlay of higher refractive index than the cladding in a Long Period Fiber Grating (LPFG) permits to improve the sensitivity to ambient refractive index changes in a great manner. When the overlay is thick enough, one of the cladding modes is guided by the overlay. This causes important shifts in the effective index values of the cladding modes, and henceforward fast shifts of the resonance wavelength of the attenuations bands in the transmission spectrum. This could be applied for improving the sensitivity of LPFG sensors. The problem is analysed with a numerical method based on LP mode approximation and coupled mode theory, which agrees with so far published experimental results.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R.  Qiang, H. E.  Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
    [CrossRef]
  2. A. M.  Vengsarkar, P. J.  Lemaire, J. B.  Judkins, V.  Bhatia, T.  Erdogan, J. E.  Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  3. B. J.  Eggleton, R. E.  Slusher, J. B.  Judkins, J. B.  Stark, A. M.  Vengsarkar, “All-optical switching in long period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
    [CrossRef] [PubMed]
  4. K. W.  Chung, S.  Yin, “Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29, 812–814 (2004).
    [CrossRef] [PubMed]
  5. V.  Bhatia, A. M.  Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef] [PubMed]
  6. V.  Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Exp. 4, 457–466 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-11-457.
    [CrossRef]
  7. Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
    [CrossRef]
  8. C. C.  Ye, S. W.  James, R. P.  Tatam, “Simultaneous temperature and bend sensing using using long-period fiber gratings,” Opt. Lett. 25, 1007–1009 (2000).
    [CrossRef]
  9. H. J.  Patrick, A. D.  Kersey, F.  Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998).
    [CrossRef]
  10. R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001).
    [CrossRef]
  11. S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
    [CrossRef]
  12. N. D.  Rees, S. W.  James, R. P.  Tatam, G. J.  Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
    [CrossRef]
  13. S. W.  James, R. P.  Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci Technol. 14, R49–R61 (2003).
    [CrossRef]
  14. E.  Anemogiannis, E. N.  Glytsis, T. K.  Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimutal/radial refractive index variation,” J. Lightwave Technol. 21, 218–227 (2003).
    [CrossRef]
  15. T.  Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  16. T.  Erdogan, “Cladding-mode resonances in short- and long-period fiber gratings filters,” J. Opt. Soc. Am. A, 14, 1760–1773 (1997).
    [CrossRef]
  17. D. B.  Stegall, T.  Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11, 343–345 (1999).
    [CrossRef]
  18. Y.  Koyamada, “Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,” IEEE Photon. Technol. Lett. 13, 308–310 (2001).
    [CrossRef]
  19. I.  Del Villar, M.  Achaerandio, I. R.  Matías, F. J.  Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. In press.
  20. K.  Morishita, “Numerical analysis of pulse broadening in grated index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981).
    [CrossRef]
  21. D.  Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252–2258 (1971).
    [CrossRef]
  22. A. K.  Ghatak, K.  Thyagarajan, M. R.  Shenoy, IEEE J. Lightwave Technol. 5, 660–667(1987).
    [CrossRef]
  23. A. W.  Snyder, J. D.  Love, Optical waveguide theory (London U.K: Chapman and Hall, 1983).
  24. K.  Skjonnemand, “Optical and structural characterisation of ultra thin films,” Ph.D. disseration (Cranfield University, Bedford, UK, 2000).
  25. G.  Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, 277, 1232–1237 (1997).
    [CrossRef]
  26. S. A.  Khodier, “Refractive index of standard oils as a function of wavelength and temperature,” Optics & Laser Tech., 34, 125–128 (2002).
    [CrossRef]

2004 (1)

2003 (4)

Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
[CrossRef]

S. W.  James, R. P.  Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci Technol. 14, R49–R61 (2003).
[CrossRef]

E.  Anemogiannis, E. N.  Glytsis, T. K.  Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimutal/radial refractive index variation,” J. Lightwave Technol. 21, 218–227 (2003).
[CrossRef]

S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
[CrossRef]

2002 (2)

N. D.  Rees, S. W.  James, R. P.  Tatam, G. J.  Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
[CrossRef]

S. A.  Khodier, “Refractive index of standard oils as a function of wavelength and temperature,” Optics & Laser Tech., 34, 125–128 (2002).
[CrossRef]

2001 (2)

Y.  Koyamada, “Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,” IEEE Photon. Technol. Lett. 13, 308–310 (2001).
[CrossRef]

R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001).
[CrossRef]

2000 (1)

1999 (2)

V.  Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Exp. 4, 457–466 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-11-457.
[CrossRef]

D. B.  Stegall, T.  Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11, 343–345 (1999).
[CrossRef]

1998 (2)

H. J.  Patrick, A. D.  Kersey, F.  Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998).
[CrossRef]

J. R.  Qiang, H. E.  Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

1997 (4)

1996 (2)

A. M.  Vengsarkar, P. J.  Lemaire, J. B.  Judkins, V.  Bhatia, T.  Erdogan, J. E.  Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V.  Bhatia, A. M.  Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef] [PubMed]

1987 (1)

A. K.  Ghatak, K.  Thyagarajan, M. R.  Shenoy, IEEE J. Lightwave Technol. 5, 660–667(1987).
[CrossRef]

1981 (1)

K.  Morishita, “Numerical analysis of pulse broadening in grated index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981).
[CrossRef]

1971 (1)

D.  Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252–2258 (1971).
[CrossRef]

Achaerandio, M.

I.  Del Villar, M.  Achaerandio, I. R.  Matías, F. J.  Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. In press.

Anemogiannis, E.

Arregui, F. J.

I.  Del Villar, M.  Achaerandio, I. R.  Matías, F. J.  Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. In press.

Ashwell, G. J.

Bhatia, V.

V.  Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Exp. 4, 457–466 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-11-457.
[CrossRef]

A. M.  Vengsarkar, P. J.  Lemaire, J. B.  Judkins, V.  Bhatia, T.  Erdogan, J. E.  Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V.  Bhatia, A. M.  Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef] [PubMed]

Bucholtz, F.

Chen, H. E.

J. R.  Qiang, H. E.  Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

Chung, K. W.

Chung, Y.

Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
[CrossRef]

Decher, G.

G.  Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, 277, 1232–1237 (1997).
[CrossRef]

Del Villar, I.

I.  Del Villar, M.  Achaerandio, I. R.  Matías, F. J.  Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. In press.

Dowker, K. P.

R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

D. B.  Stegall, T.  Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11, 343–345 (1999).
[CrossRef]

T.  Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

T.  Erdogan, “Cladding-mode resonances in short- and long-period fiber gratings filters,” J. Opt. Soc. Am. A, 14, 1760–1773 (1997).
[CrossRef]

A. M.  Vengsarkar, P. J.  Lemaire, J. B.  Judkins, V.  Bhatia, T.  Erdogan, J. E.  Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Gaylord, T. K.

Ghassemlooy, Z.

R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001).
[CrossRef]

Ghatak, A. K.

A. K.  Ghatak, K.  Thyagarajan, M. R.  Shenoy, IEEE J. Lightwave Technol. 5, 660–667(1987).
[CrossRef]

Gloge, D.

D.  Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252–2258 (1971).
[CrossRef]

Glytsis, E. N.

Han, Y. G.

Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
[CrossRef]

Hassan, A.

R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001).
[CrossRef]

Hou, R.

R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001).
[CrossRef]

James, S. W.

Judkins, J. B.

B. J.  Eggleton, R. E.  Slusher, J. B.  Judkins, J. B.  Stark, A. M.  Vengsarkar, “All-optical switching in long period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef] [PubMed]

A. M.  Vengsarkar, P. J.  Lemaire, J. B.  Judkins, V.  Bhatia, T.  Erdogan, J. E.  Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Kang, J. U.

Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
[CrossRef]

Kersey, A. D.

Khodier, S. A.

S. A.  Khodier, “Refractive index of standard oils as a function of wavelength and temperature,” Optics & Laser Tech., 34, 125–128 (2002).
[CrossRef]

Kim, C. S.

Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
[CrossRef]

Koyamada, Y.

Y.  Koyamada, “Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,” IEEE Photon. Technol. Lett. 13, 308–310 (2001).
[CrossRef]

Kumar, P. S.

S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
[CrossRef]

Kumar, R. D.

S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
[CrossRef]

Lee, S. B.

Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
[CrossRef]

Lee, S. T.

S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
[CrossRef]

Lemaire, P. J.

A. M.  Vengsarkar, P. J.  Lemaire, J. B.  Judkins, V.  Bhatia, T.  Erdogan, J. E.  Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Love, J. D.

A. W.  Snyder, J. D.  Love, Optical waveguide theory (London U.K: Chapman and Hall, 1983).

Lu, C.

R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001).
[CrossRef]

Matías, I. R.

I.  Del Villar, M.  Achaerandio, I. R.  Matías, F. J.  Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. In press.

Morishita, K.

K.  Morishita, “Numerical analysis of pulse broadening in grated index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981).
[CrossRef]

Nampoori, V. P. N.

S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
[CrossRef]

Paek, U. C.

Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
[CrossRef]

Patrick, H. J.

Qiang, J. R.

J. R.  Qiang, H. E.  Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

Radhakrishnan, P.

S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
[CrossRef]

Rees, N. D.

Shenoy, M. R.

A. K.  Ghatak, K.  Thyagarajan, M. R.  Shenoy, IEEE J. Lightwave Technol. 5, 660–667(1987).
[CrossRef]

Sipe, J. E.

A. M.  Vengsarkar, P. J.  Lemaire, J. B.  Judkins, V.  Bhatia, T.  Erdogan, J. E.  Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Skjonnemand, K.

K.  Skjonnemand, “Optical and structural characterisation of ultra thin films,” Ph.D. disseration (Cranfield University, Bedford, UK, 2000).

Slusher, R. E.

Snyder, A. W.

A. W.  Snyder, J. D.  Love, Optical waveguide theory (London U.K: Chapman and Hall, 1983).

Stark, J. B.

Stegall, D. B.

D. B.  Stegall, T.  Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11, 343–345 (1999).
[CrossRef]

Tatam, R. P.

Thyagarajan, K.

A. K.  Ghatak, K.  Thyagarajan, M. R.  Shenoy, IEEE J. Lightwave Technol. 5, 660–667(1987).
[CrossRef]

Vallabhan, C. P. G.

S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
[CrossRef]

Vengsarkar, A. M.

Ye, C. C.

Yin, S.

App. Opt. (1)

D.  Gloge, “Weakly guiding fibers,” App. Opt. 10, 2252–2258 (1971).
[CrossRef]

Electron. Lett. (1)

J. R.  Qiang, H. E.  Chen, “Gain flattening fibre filters using phase shifted long period fibre grating,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

IEEE J. Lightwave Technol. (1)

A. K.  Ghatak, K.  Thyagarajan, M. R.  Shenoy, IEEE J. Lightwave Technol. 5, 660–667(1987).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. B.  Stegall, T.  Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11, 343–345 (1999).
[CrossRef]

Y.  Koyamada, “Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,” IEEE Photon. Technol. Lett. 13, 308–310 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K.  Morishita, “Numerical analysis of pulse broadening in grated index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (1)

Meas. Sci Technol. (1)

S. W.  James, R. P.  Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci Technol. 14, R49–R61 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

R.  Hou, Z.  Ghassemlooy, A.  Hassan, C.  Lu, K. P.  Dowker, “Modelling of long-period fibre grating response to refractive index higher than that of cladding,” Meas. Sci. Technol. 12, 1709–1713 (2001).
[CrossRef]

Opt. Comm. (1)

S. T.  Lee, R. D.  Kumar, P. S.  Kumar, P.  Radhakrishnan, C. P. G.  Vallabhan, V. P. N.  Nampoori, “Long period gratings in multimode optical fibers: application in chemical sensing,” Opt. Comm. 224, 237–241 (2003).
[CrossRef]

Opt. Exp. (2)

V.  Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Exp. 4, 457–466 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-11-457.
[CrossRef]

Y. G.  Han, S. B.  Lee, C. S.  Kim, J. U.  Kang, U. C.  Paek, Y.  Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Exp. 11, 476–481 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476.
[CrossRef]

Opt. Lett. (5)

Optics & Laser Tech. (1)

S. A.  Khodier, “Refractive index of standard oils as a function of wavelength and temperature,” Optics & Laser Tech., 34, 125–128 (2002).
[CrossRef]

Science (1)

G.  Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, 277, 1232–1237 (1997).
[CrossRef]

Other (3)

A. W.  Snyder, J. D.  Love, Optical waveguide theory (London U.K: Chapman and Hall, 1983).

K.  Skjonnemand, “Optical and structural characterisation of ultra thin films,” Ph.D. disseration (Cranfield University, Bedford, UK, 2000).

I.  Del Villar, M.  Achaerandio, I. R.  Matías, F. J.  Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. In press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Transversal and longitudinal section of LPFG structure deposition of an overlay on the cladding.

Fig. 2.
Fig. 2.

Effective index as a function of the overlay thickness of a) first ten cladding modes and b) core mode and first four cladding modes.

Fig. 3.
Fig. 3.

Transverse electric field of the fifth cladding mode for three overlay thickness values: 0, 300, and 750 nm.

Fig. 4.
Fig. 4.

Resonance wavelength shift in third cladding mode, as a function of the thickness of the overlay. Refractive indices of overlay: a) 1.57, b) 1.62 c) 1.67. Ambient index: 1.

Fig. 5.
Fig. 5.

Transmission spectra of an LPFG as a function of three ambient refractive indices: 1, 1.05 and 1.1 a) without overlay b) with overlay of 278.5 nm and refractive index 1.67.

Fig. 6.
Fig. 6.

Resonance wavelength shift in third, fourth and fifth cladding modes, as a function of the thickness of the overlay. Overlay refractive index: 1.67. Ambient index 1.468.

Fig. 7.
Fig. 7.

Transmittance spectra for the fifth cladding mode resonance of an LPFG for three oil refractive indices: 1.461, 1.481, 1.518. a) without overlay b) with overlay of 159 nm and refractive index 1.67.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

T i = 1 sin 2 ( k i L )
d 2 u d r 2 + [ k 0 2 n ˜ 2 ( r ) β 2 ] u = 0
n ˜ 2 = n 2 ( r ) v 2 1 4 k 0 2 r 2 ν = 0
u ( r ) = R ( r ) r
U 0 j , i ( r , ϕ , z ) = exp ( j β 0 j z ) Ψ 0 j , i ( r , ϕ ) = exp ( j β 0 j z ) Φ ( ϕ ) R 0 j , i ( r ) =
= exp ( j β 0 j z ) × { A 0 j , i J 0 ( r γ 0 j , i ) + B 0 j , i Y 0 ( r γ 0 j , i ) A 0 j , i I 0 ( r γ 0 j , i ) + B 0 j , i K 0 ( r γ 0 j , i ) } when β 0 j < k 0 n i β 0 j > k 0 n i
P 0 j = β 0 j 2 ω μ 0 ϕ = 0 2 π d ϕ r = 0 r 1 R 0 j ( r ) R 0 j ( r ) r d r
K ν j , μ k = ω 4 P 0 × ϕ = 0 2 π r = 0 Δ ε ( r , ϕ , z ) Ψ ν j ( r , ϕ ) Ψ μ k ( r , ϕ ) r d r d ϕ
Δ ε ( r , z ) 2 ε 0 n 0 ( r ) Δ n ( r , z )
Δ n ( r , z ) = p ( r ) σ ( z ) S ( z )
S ( z ) = s 0 + s 1 cos ( ( 2 π Λ ) z )
K ν j , μ k = [ s 0 + s 1 cos ( ( 2 π Λ ) z ) ] ω ε 0 2 P 0 × ϕ = 0 2 π r = 0 n 0 ( r ) p ( r ) Ψ ν j ( r , ϕ ) Ψ μ k ( r , ϕ ) r d r d ϕ =
= [ s 0 + s 1 cos ( ( 2 π Λ ) z ) ] ς ν j , μ k
ς 0 j , 0 k = ω ε 0 2 P 0 n 0 ( r 1 ) p ( r 1 ) ϕ = 0 2 π d ϕ r = 0 r 1 R 0 j ( r ) R 0 k ( r ) r d r
d F 0 k ( z ) d z = j j = 1 M K 0 j , 0 k F 0 j ( z ) exp ( j ( β 0 j β 0 k ) z ) for k = 1 , 2 , . . . M .
( F . 01 ( z ) F . 02 ( z ) F . 0 N ( z ) ) = ( Q 01 V 02 , 01 V 0 N , 01 V 01 , 02 Q 02 V 0 N , 02 V 01 , 0 N V 02 , 0 N Q 0 N ) ( F 01 ( z ) F 02 ( z ) F 0 N ( z ) )
Q 0 j = j σ ( z ) s 0 ζ 0 j , 0 j
V 0 j , 0 k = j σ ( z ) s 1 2 ζ 0 j , 0 k exp j z ( β 0 j β 0 k ± 2 π Λ )
F 01 ( L ) 2 F 01 ( 0 ) 2
β 01 ( λ ) β 0 j ( λ ) 2 π Λ 10 3 μ m 1
β 01 ( λ ) β 0 j ( λ ) = 2 π Λ
β 01 ( λ ) + s 0 ζ 01 , 01 ( λ ) ( β 0 j ( λ ) + s 0 ζ 0 j , 0 j ( λ ) ) = 2 π Λ

Metrics