Abstract

We present a single-mode, single-polarization, distributed-feedback liquid dye laser, based on a short high-order Bragg grating defined in a single polymer layer between two glass substrates. In this device we obtain single-mode operation in a multimode structure by means of transverse-mode discrimination with antiguiding segments. The laser is fabricated using microfabrication technology, is pumped by a pulsed frequency-doubled Nd:YAG laser, and emits narrow-line-width light in the chip plane at 577 nm. The output from the laser is coupled into integrated planar waveguides defined in the same polymer film. The laser device is thus well suited for integration, for example, into polymer based lab-on-a-chip microsystems.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.  Verpoorte, “Chip vision—optics for microchips,” Lab on a Chip 3, 42N–52N (2003).
  2. A.  Brecht, G.  Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
    [CrossRef] [PubMed]
  3. L.  Lading, L. B.  Nielsen, T.  Sevel, “Comparing biosensors,” in Proceedings of the IEEE Sensors 2002 (2002), pp. 229–232.
  4. C.  Bojarski, E.  Grabowska, “Photoluminescence decay and quantum yield studies for rhodamine 6G in ethanol,” Acta Physica Polonica A60, 397–406 (1981).
  5. G. P.  Agrawal, N. K.  Dutta, Semiconductor Lasers, 2nd. ed. (Reinhold, N.Y., 1993)
  6. J. T.  Kringlebotn, J.-L.  Archambault, D. N.  Payne, Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
    [CrossRef] [PubMed]
  7. B.  Bilenberg, T.  Nielsen, B.  Clausen, A.  Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng. 14, 814–818 (2004)
    [CrossRef]
  8. K. B.  Mogensen, J.  El-Ali, A.  Wolff, J. P.  Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 89, 4072–4078 (2003).
    [CrossRef]
  9. S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.
  10. B.  Helbo, A.  Kristensen, A.  Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
    [CrossRef]
  11. Y.  Cheng, K.  Sugioka, K.  Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
    [CrossRef] [PubMed]
  12. S. L.  McCall, P. M.  Platzman, “An optimized ?/2 distributed feedback laser,” IEEE J. Quantum Electron. 21, 1899–1904 (1985).
    [CrossRef]
  13. L. A.  Coldren, S. W.  Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York, 1995).
  14. B. B.  Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
    [CrossRef]
  15. T. B.  Koch, J. B.  Davies, D.  Wickramasinghe, “Finite element/finite difference propagation algorithm for integrated optical device,” Electron. Lett. 25, 514–516 (1989).
    [CrossRef]

2004 (2)

B.  Bilenberg, T.  Nielsen, B.  Clausen, A.  Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng. 14, 814–818 (2004)
[CrossRef]

Y.  Cheng, K.  Sugioka, K.  Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
[CrossRef] [PubMed]

2003 (3)

K. B.  Mogensen, J.  El-Ali, A.  Wolff, J. P.  Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 89, 4072–4078 (2003).
[CrossRef]

B.  Helbo, A.  Kristensen, A.  Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[CrossRef]

E.  Verpoorte, “Chip vision—optics for microchips,” Lab on a Chip 3, 42N–52N (2003).

1995 (1)

A.  Brecht, G.  Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
[CrossRef] [PubMed]

1994 (1)

1989 (1)

T. B.  Koch, J. B.  Davies, D.  Wickramasinghe, “Finite element/finite difference propagation algorithm for integrated optical device,” Electron. Lett. 25, 514–516 (1989).
[CrossRef]

1985 (1)

S. L.  McCall, P. M.  Platzman, “An optimized ?/2 distributed feedback laser,” IEEE J. Quantum Electron. 21, 1899–1904 (1985).
[CrossRef]

1981 (1)

C.  Bojarski, E.  Grabowska, “Photoluminescence decay and quantum yield studies for rhodamine 6G in ethanol,” Acta Physica Polonica A60, 397–406 (1981).

1969 (1)

B. B.  Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Agrawal, G. P.

G. P.  Agrawal, N. K.  Dutta, Semiconductor Lasers, 2nd. ed. (Reinhold, N.Y., 1993)

Archambault, J.-L.

Balslev, S.

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

Bilenberg, B.

B.  Bilenberg, T.  Nielsen, B.  Clausen, A.  Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng. 14, 814–818 (2004)
[CrossRef]

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

Bojarski, C.

C.  Bojarski, E.  Grabowska, “Photoluminescence decay and quantum yield studies for rhodamine 6G in ethanol,” Acta Physica Polonica A60, 397–406 (1981).

Brecht, A.

A.  Brecht, G.  Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
[CrossRef] [PubMed]

Cheng, Y.

Clausen, B.

B.  Bilenberg, T.  Nielsen, B.  Clausen, A.  Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng. 14, 814–818 (2004)
[CrossRef]

Coldren, L. A.

L. A.  Coldren, S. W.  Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York, 1995).

Corzine, S. W.

L. A.  Coldren, S. W.  Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York, 1995).

Davies, J. B.

T. B.  Koch, J. B.  Davies, D.  Wickramasinghe, “Finite element/finite difference propagation algorithm for integrated optical device,” Electron. Lett. 25, 514–516 (1989).
[CrossRef]

Dutta, N. K.

G. P.  Agrawal, N. K.  Dutta, Semiconductor Lasers, 2nd. ed. (Reinhold, N.Y., 1993)

El-Ali, J.

K. B.  Mogensen, J.  El-Ali, A.  Wolff, J. P.  Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 89, 4072–4078 (2003).
[CrossRef]

Gauglitz, G.

A.  Brecht, G.  Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
[CrossRef] [PubMed]

Geschke, O.

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

Grabowska, E.

C.  Bojarski, E.  Grabowska, “Photoluminescence decay and quantum yield studies for rhodamine 6G in ethanol,” Acta Physica Polonica A60, 397–406 (1981).

Helbo, B.

B.  Helbo, A.  Kristensen, A.  Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[CrossRef]

Jorgensen, A. M.

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

Koch, T. B.

T. B.  Koch, J. B.  Davies, D.  Wickramasinghe, “Finite element/finite difference propagation algorithm for integrated optical device,” Electron. Lett. 25, 514–516 (1989).
[CrossRef]

Kringlebotn, J. T.

Kristensen, A.

B.  Bilenberg, T.  Nielsen, B.  Clausen, A.  Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng. 14, 814–818 (2004)
[CrossRef]

B.  Helbo, A.  Kristensen, A.  Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[CrossRef]

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

Kutter, J. P.

K. B.  Mogensen, J.  El-Ali, A.  Wolff, J. P.  Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 89, 4072–4078 (2003).
[CrossRef]

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

Lading, L.

L.  Lading, L. B.  Nielsen, T.  Sevel, “Comparing biosensors,” in Proceedings of the IEEE Sensors 2002 (2002), pp. 229–232.

McCall, S. L.

S. L.  McCall, P. M.  Platzman, “An optimized ?/2 distributed feedback laser,” IEEE J. Quantum Electron. 21, 1899–1904 (1985).
[CrossRef]

Menon, A.

B.  Helbo, A.  Kristensen, A.  Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[CrossRef]

Midorikawa, K.

Mogensen, K. B.

K. B.  Mogensen, J.  El-Ali, A.  Wolff, J. P.  Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 89, 4072–4078 (2003).
[CrossRef]

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

Nielsen, L. B.

L.  Lading, L. B.  Nielsen, T.  Sevel, “Comparing biosensors,” in Proceedings of the IEEE Sensors 2002 (2002), pp. 229–232.

Nielsen, T.

B.  Bilenberg, T.  Nielsen, B.  Clausen, A.  Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng. 14, 814–818 (2004)
[CrossRef]

Payne, D. N.

Platzman, P. M.

S. L.  McCall, P. M.  Platzman, “An optimized ?/2 distributed feedback laser,” IEEE J. Quantum Electron. 21, 1899–1904 (1985).
[CrossRef]

Sevel, T.

L.  Lading, L. B.  Nielsen, T.  Sevel, “Comparing biosensors,” in Proceedings of the IEEE Sensors 2002 (2002), pp. 229–232.

Snakenborg, D.

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

Snavely, B. B.

B. B.  Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Sugioka, K.

Verpoorte, E.

E.  Verpoorte, “Chip vision—optics for microchips,” Lab on a Chip 3, 42N–52N (2003).

Wickramasinghe, D.

T. B.  Koch, J. B.  Davies, D.  Wickramasinghe, “Finite element/finite difference propagation algorithm for integrated optical device,” Electron. Lett. 25, 514–516 (1989).
[CrossRef]

Wolff, A.

K. B.  Mogensen, J.  El-Ali, A.  Wolff, J. P.  Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 89, 4072–4078 (2003).
[CrossRef]

Acta Physica Polonica (1)

C.  Bojarski, E.  Grabowska, “Photoluminescence decay and quantum yield studies for rhodamine 6G in ethanol,” Acta Physica Polonica A60, 397–406 (1981).

Appl. Opt. (1)

K. B.  Mogensen, J.  El-Ali, A.  Wolff, J. P.  Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 89, 4072–4078 (2003).
[CrossRef]

Biosens. Bioelectron. (1)

A.  Brecht, G.  Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10, 923–936 (1995).
[CrossRef] [PubMed]

Electron. Lett. (1)

T. B.  Koch, J. B.  Davies, D.  Wickramasinghe, “Finite element/finite difference propagation algorithm for integrated optical device,” Electron. Lett. 25, 514–516 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. L.  McCall, P. M.  Platzman, “An optimized ?/2 distributed feedback laser,” IEEE J. Quantum Electron. 21, 1899–1904 (1985).
[CrossRef]

J. Micromech. Microeng. (2)

B.  Helbo, A.  Kristensen, A.  Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13, 307–311 (2003).
[CrossRef]

B.  Bilenberg, T.  Nielsen, B.  Clausen, A.  Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng. 14, 814–818 (2004)
[CrossRef]

Lab on a Chip (1)

E.  Verpoorte, “Chip vision—optics for microchips,” Lab on a Chip 3, 42N–52N (2003).

Opt. Lett. (2)

Proc. IEEE (1)

B. B.  Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Other (4)

L. A.  Coldren, S. W.  Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, New York, 1995).

S.  Balslev, B.  Bilenberg, O.  Geschke, A. M.  Jorgensen, A.  Kristensen, J. P.  Kutter, K. B.  Mogensen, D.  Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in Proceedings of the 17th IEEE MEMS (IEEE, 2004), pp. 89–92.

L.  Lading, L. B.  Nielsen, T.  Sevel, “Comparing biosensors,” in Proceedings of the IEEE Sensors 2002 (2002), pp. 229–232.

G. P.  Agrawal, N. K.  Dutta, Semiconductor Lasers, 2nd. ed. (Reinhold, N.Y., 1993)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Laser device. (a) SEM picture of laser resonator. A number of walls are placed in a wide fluid channel; waveguides lead the light away from the laser, down to the left. The picture was taken before the channels were sealed off by the lid. (b) Closeup of the resonator walls, whose vertical sides make up the reflection for the resonator. (c) A finished laser structure, with the same laser resonator as in (a) but with waveguides on both sides of the resonator. Fluid inlets and outlets pass the dye solution through the fluid channel. (d) Schematic of laser structure profile: two glass substrates surround the 8-µm SU-8 layer and the 4-µm PMMA layer, and the total height is 1 mm.

Fig. 2.
Fig. 2.

Schematic of reference plane in the middle of the resonator for calculating the round-trip loss using the reflections rA and rB on each side of the reference plane (dotted line). The row of squares represents polymer bars.

Fig. 3.
Fig. 3.

The fundamental mode of the SU-8 slab waveguide propagating across a fluid channel (ethanol+dye) in the PMMA and glass cladding. Since the refractive index in the channel is lower than for the surroundings, the segment will be antiguiding, thus distorting the original field distribution Un (y).

Fig. 4.
Fig. 4.

Calculated wavelength-dependent round-trip loss as seen from the center of the resonator (m=0). The inset shows a closeup of two peaks with m=0 and m=1 transverse modes illustrated. The peak position is slightly offset because of the difference in effective refractive index for the two modes.

Fig. 5.
Fig. 5.

Laser spectrum for a device. A main peak dominates the spectrum. Inset: The dye laser output power versus the mean total Nd:YAG pumping power. The laser exhibits a threshold at ~0.02 mJ mm-2 (8 mW).

Tables (1)

Tables Icon

Table 1. Calculated mode-dependent power loss for the first six modes in the SU-8 polymer slab waveguide. The rise in loss is due to lack of confinement in the anti-guiding fluid segments of the resonator.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C m , n p 2 = U m * ( y ) U n , p ( y ) d y 2 ,

Metrics