Abstract

We demonstrate a compact, low-power and broadband electro-optic switch in a simple waveguide geometry with undoped nematic liquid crystals. We experimentally achieve near infrared switching and signal routing with voltage modulations as low as 0.21V and a device length of 0.16mm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I.  Papadimitriou, C.  Papazoglou, A. S.  Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384–405 (2003).
    [CrossRef]
  2. E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [CrossRef]
  3. A.  Pattavina, M.  Martinelli, G.  Maier, P.  Boffi, “Techniques and technologies towards all-optical switching,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).
  4. A.  d’Alessandro, R.  Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
    [CrossRef]
  5. J. L.  de Bougrenet, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31, 241–269 (2004).
    [CrossRef]
  6. J.  Qui, H.  Xianyu, J.  Liang, G. P.  Crawford, “Active U-Turn electrooptic switch formed in patterned holographic polymer-dispersed,” Liq. Cryst. 31, 241–269 (2004).
  7. B.  Fracasso, J. L.  de Bougrenet, M.  Razzak, C.  Uche, “Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch,” IEEE J. Lightwave Technol. 21, 2405–2411 (2003).
    [CrossRef]
  8. J. S.  Patel, Y.  Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
    [CrossRef]
  9. M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
    [CrossRef]
  10. C.  Vasquez, J. M.  Pena, S. E.  Vargas, A. L.  Aranda, I.  Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sensor Journ. 3, 513–518 (2003).
    [CrossRef]
  11. I. C.  Khoo, Liquid crystals: physical properties and nonlinear optical phenomena (Wiley and Sons, New York, 1995).
  12. M.  Kobayashi, H.  Terui, M.  Kawachi, J.  Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
    [CrossRef]
  13. J. P.  Sheridan, J. M.  Schnur, T. G.  Giallorenzi, “Electro-optic switching in low loss liquid crystal waveguides,” Appl. Phys. Lett. 22, 560–562 (1973).
    [CrossRef]
  14. R.  Asquini, A.  d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55µ m,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
    [CrossRef]
  15. A.  d’Alessandro, R.  Asquini, F.  Menichella, C.  Ciminelli, “Realisation and characterisation of a ferroelectric liquid crystal bistable optical switch,” Mol. Cryst. Liq. Cryst. 372, 353–363 (2001).
    [CrossRef]
  16. L.  Sirleto, G.  Coppola, G.  Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A: Pure Appl. Opt. 5, S298–S304 (2003).
    [CrossRef]
  17. F.  Simoni, Nonlinear optical properties of liquid crystals (World Scientific, Singapore, 1997).
  18. P. G.  de Gennes, J.  Prost, The physics of liquid crystals (Clarendon Press, Oxford, 2001).
  19. D. A.  Dunmur, A.  Fukuda, G. R.  Luckhurst, Liquid crystals: nematics (INSPEC, London 2001).

2004 (4)

A.  Pattavina, M.  Martinelli, G.  Maier, P.  Boffi, “Techniques and technologies towards all-optical switching,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).

J. L.  de Bougrenet, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31, 241–269 (2004).
[CrossRef]

J.  Qui, H.  Xianyu, J.  Liang, G. P.  Crawford, “Active U-Turn electrooptic switch formed in patterned holographic polymer-dispersed,” Liq. Cryst. 31, 241–269 (2004).

M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
[CrossRef]

2003 (5)

C.  Vasquez, J. M.  Pena, S. E.  Vargas, A. L.  Aranda, I.  Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sensor Journ. 3, 513–518 (2003).
[CrossRef]

L.  Sirleto, G.  Coppola, G.  Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A: Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

B.  Fracasso, J. L.  de Bougrenet, M.  Razzak, C.  Uche, “Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch,” IEEE J. Lightwave Technol. 21, 2405–2411 (2003).
[CrossRef]

A.  d’Alessandro, R.  Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

G. I.  Papadimitriou, C.  Papazoglou, A. S.  Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384–405 (2003).
[CrossRef]

2002 (1)

R.  Asquini, A.  d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55µ m,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
[CrossRef]

2001 (1)

A.  d’Alessandro, R.  Asquini, F.  Menichella, C.  Ciminelli, “Realisation and characterisation of a ferroelectric liquid crystal bistable optical switch,” Mol. Cryst. Liq. Cryst. 372, 353–363 (2001).
[CrossRef]

2000 (1)

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

1995 (1)

J. S.  Patel, Y.  Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
[CrossRef]

1982 (1)

M.  Kobayashi, H.  Terui, M.  Kawachi, J.  Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

1973 (1)

J. P.  Sheridan, J. M.  Schnur, T. G.  Giallorenzi, “Electro-optic switching in low loss liquid crystal waveguides,” Appl. Phys. Lett. 22, 560–562 (1973).
[CrossRef]

Aranda, A. L.

C.  Vasquez, J. M.  Pena, S. E.  Vargas, A. L.  Aranda, I.  Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sensor Journ. 3, 513–518 (2003).
[CrossRef]

Asquini, R.

A.  d’Alessandro, R.  Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

R.  Asquini, A.  d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55µ m,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
[CrossRef]

A.  d’Alessandro, R.  Asquini, F.  Menichella, C.  Ciminelli, “Realisation and characterisation of a ferroelectric liquid crystal bistable optical switch,” Mol. Cryst. Liq. Cryst. 372, 353–363 (2001).
[CrossRef]

Attanasio, D. V.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Boffi, P.

A.  Pattavina, M.  Martinelli, G.  Maier, P.  Boffi, “Techniques and technologies towards all-optical switching,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).

Bossi, D. E

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Breglio, G.

L.  Sirleto, G.  Coppola, G.  Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A: Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

Ciminelli, C.

A.  d’Alessandro, R.  Asquini, F.  Menichella, C.  Ciminelli, “Realisation and characterisation of a ferroelectric liquid crystal bistable optical switch,” Mol. Cryst. Liq. Cryst. 372, 353–363 (2001).
[CrossRef]

Coppola, G.

L.  Sirleto, G.  Coppola, G.  Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A: Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

Crawford, G. P.

J.  Qui, H.  Xianyu, J.  Liang, G. P.  Crawford, “Active U-Turn electrooptic switch formed in patterned holographic polymer-dispersed,” Liq. Cryst. 31, 241–269 (2004).

d’Alessandro, A.

A.  d’Alessandro, R.  Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

R.  Asquini, A.  d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55µ m,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
[CrossRef]

A.  d’Alessandro, R.  Asquini, F.  Menichella, C.  Ciminelli, “Realisation and characterisation of a ferroelectric liquid crystal bistable optical switch,” Mol. Cryst. Liq. Cryst. 372, 353–363 (2001).
[CrossRef]

de Bougrenet, J. L.

J. L.  de Bougrenet, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31, 241–269 (2004).
[CrossRef]

B.  Fracasso, J. L.  de Bougrenet, M.  Razzak, C.  Uche, “Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch,” IEEE J. Lightwave Technol. 21, 2405–2411 (2003).
[CrossRef]

de Gennes, P. G.

P. G.  de Gennes, J.  Prost, The physics of liquid crystals (Clarendon Press, Oxford, 2001).

Dunmur, D. A.

D. A.  Dunmur, A.  Fukuda, G. R.  Luckhurst, Liquid crystals: nematics (INSPEC, London 2001).

Fracasso, B.

B.  Fracasso, J. L.  de Bougrenet, M.  Razzak, C.  Uche, “Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch,” IEEE J. Lightwave Technol. 21, 2405–2411 (2003).
[CrossRef]

Fritz, D. J.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Fukuda, A.

D. A.  Dunmur, A.  Fukuda, G. R.  Luckhurst, Liquid crystals: nematics (INSPEC, London 2001).

Giallorenzi, T. G.

J. P.  Sheridan, J. M.  Schnur, T. G.  Giallorenzi, “Electro-optic switching in low loss liquid crystal waveguides,” Appl. Phys. Lett. 22, 560–562 (1973).
[CrossRef]

Hallemeier, P. F.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Huang, M. J.

M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
[CrossRef]

Kawachi, M.

M.  Kobayashi, H.  Terui, M.  Kawachi, J.  Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

Khoo, I. C.

I. C.  Khoo, Liquid crystals: physical properties and nonlinear optical phenomena (Wiley and Sons, New York, 1995).

Kissa, K. M.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Kobayashi, M.

M.  Kobayashi, H.  Terui, M.  Kawachi, J.  Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

Lafaw, D. A.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Lai, Y. F.

M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
[CrossRef]

Lan, Y. P.

M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
[CrossRef]

Liang, J.

J.  Qui, H.  Xianyu, J.  Liang, G. P.  Crawford, “Active U-Turn electrooptic switch formed in patterned holographic polymer-dispersed,” Liq. Cryst. 31, 241–269 (2004).

Luckhurst, G. R.

D. A.  Dunmur, A.  Fukuda, G. R.  Luckhurst, Liquid crystals: nematics (INSPEC, London 2001).

Maack, D. R.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Maier, G.

A.  Pattavina, M.  Martinelli, G.  Maier, P.  Boffi, “Techniques and technologies towards all-optical switching,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).

Martinelli, M.

A.  Pattavina, M.  Martinelli, G.  Maier, P.  Boffi, “Techniques and technologies towards all-optical switching,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).

McBrien, G. J.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Menichella, F.

A.  d’Alessandro, R.  Asquini, F.  Menichella, C.  Ciminelli, “Realisation and characterisation of a ferroelectric liquid crystal bistable optical switch,” Mol. Cryst. Liq. Cryst. 372, 353–363 (2001).
[CrossRef]

Murphy, E. J.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Noda, J.

M.  Kobayashi, H.  Terui, M.  Kawachi, J.  Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

Pan, C. L.

M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
[CrossRef]

Pan, R. P.

M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
[CrossRef]

Papadimitriou, G. I.

Papazoglou, C.

Patel, J. S.

J. S.  Patel, Y.  Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
[CrossRef]

Pattavina, A.

A.  Pattavina, M.  Martinelli, G.  Maier, P.  Boffi, “Techniques and technologies towards all-optical switching,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).

Pena, J. M.

C.  Vasquez, J. M.  Pena, S. E.  Vargas, A. L.  Aranda, I.  Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sensor Journ. 3, 513–518 (2003).
[CrossRef]

Perez, I.

C.  Vasquez, J. M.  Pena, S. E.  Vargas, A. L.  Aranda, I.  Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sensor Journ. 3, 513–518 (2003).
[CrossRef]

Pomportsis, A. S.

Prost, J.

P. G.  de Gennes, J.  Prost, The physics of liquid crystals (Clarendon Press, Oxford, 2001).

Qui, J.

J.  Qui, H.  Xianyu, J.  Liang, G. P.  Crawford, “Active U-Turn electrooptic switch formed in patterned holographic polymer-dispersed,” Liq. Cryst. 31, 241–269 (2004).

Razzak, M.

B.  Fracasso, J. L.  de Bougrenet, M.  Razzak, C.  Uche, “Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch,” IEEE J. Lightwave Technol. 21, 2405–2411 (2003).
[CrossRef]

Schnur, J. M.

J. P.  Sheridan, J. M.  Schnur, T. G.  Giallorenzi, “Electro-optic switching in low loss liquid crystal waveguides,” Appl. Phys. Lett. 22, 560–562 (1973).
[CrossRef]

Sheridan, J. P.

J. P.  Sheridan, J. M.  Schnur, T. G.  Giallorenzi, “Electro-optic switching in low loss liquid crystal waveguides,” Appl. Phys. Lett. 22, 560–562 (1973).
[CrossRef]

Sheu, C. R.

M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
[CrossRef]

Silberberg, Y.

J. S.  Patel, Y.  Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
[CrossRef]

Simoni, F.

F.  Simoni, Nonlinear optical properties of liquid crystals (World Scientific, Singapore, 1997).

Sirleto, L.

L.  Sirleto, G.  Coppola, G.  Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A: Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

Terui, H.

M.  Kobayashi, H.  Terui, M.  Kawachi, J.  Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

Uche, C.

B.  Fracasso, J. L.  de Bougrenet, M.  Razzak, C.  Uche, “Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch,” IEEE J. Lightwave Technol. 21, 2405–2411 (2003).
[CrossRef]

Vargas, S. E.

C.  Vasquez, J. M.  Pena, S. E.  Vargas, A. L.  Aranda, I.  Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sensor Journ. 3, 513–518 (2003).
[CrossRef]

Vasquez, C.

C.  Vasquez, J. M.  Pena, S. E.  Vargas, A. L.  Aranda, I.  Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sensor Journ. 3, 513–518 (2003).
[CrossRef]

Wooten, E. L.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Xianyu, H.

J.  Qui, H.  Xianyu, J.  Liang, G. P.  Crawford, “Active U-Turn electrooptic switch formed in patterned holographic polymer-dispersed,” Liq. Cryst. 31, 241–269 (2004).

Yi-Yan, A.

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

J. P.  Sheridan, J. M.  Schnur, T. G.  Giallorenzi, “Electro-optic switching in low loss liquid crystal waveguides,” Appl. Phys. Lett. 22, 560–562 (1973).
[CrossRef]

IEEE J. Lightwave Technol. (1)

B.  Fracasso, J. L.  de Bougrenet, M.  Razzak, C.  Uche, “Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch,” IEEE J. Lightwave Technol. 21, 2405–2411 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M.  Kobayashi, H.  Terui, M.  Kawachi, J.  Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L.  Wooten, K. M.  Kissa, A.  Yi-Yan, E. J.  Murphy, D. A.  Lafaw, P. F.  Hallemeier, D. R.  Maack, D. V.  Attanasio, D. J.  Fritz, G. J.  McBrien, D. E  Bossi, “A review of lithium niobate modulator for fiber-optic communication system,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A.  Pattavina, M.  Martinelli, G.  Maier, P.  Boffi, “Techniques and technologies towards all-optical switching,” IEEE Photon. Technol. Lett. 16, 650–652 (2004).

J. S.  Patel, Y.  Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
[CrossRef]

M. J.  Huang, R. P.  Pan, C. R.  Sheu, Y. P.  Lan, Y. F.  Lai, C. L.  Pan, “Multimode optical demultiplexer for DWDM with liquid crystal enabler functionalities,” IEEE Photon. Technol. Lett. 16, 2254–2256 (2004).
[CrossRef]

IEEE Sensor Journ. (1)

C.  Vasquez, J. M.  Pena, S. E.  Vargas, A. L.  Aranda, I.  Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sensor Journ. 3, 513–518 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

L.  Sirleto, G.  Coppola, G.  Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” J. Opt. A: Pure Appl. Opt. 5, S298–S304 (2003).
[CrossRef]

Liq. Cryst. (2)

J. L.  de Bougrenet, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31, 241–269 (2004).
[CrossRef]

J.  Qui, H.  Xianyu, J.  Liang, G. P.  Crawford, “Active U-Turn electrooptic switch formed in patterned holographic polymer-dispersed,” Liq. Cryst. 31, 241–269 (2004).

Mol. Cryst. Liq. Cryst. (3)

A.  d’Alessandro, R.  Asquini, “Liquid crystal devices for photonic switching applications: state of the art and future developments,” Mol. Cryst. Liq. Cryst. 398, 207–221 (2003).
[CrossRef]

R.  Asquini, A.  d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55µ m,” Mol. Cryst. Liq. Cryst. 375, 243–247 (2002).
[CrossRef]

A.  d’Alessandro, R.  Asquini, F.  Menichella, C.  Ciminelli, “Realisation and characterisation of a ferroelectric liquid crystal bistable optical switch,” Mol. Cryst. Liq. Cryst. 372, 353–363 (2001).
[CrossRef]

Other (4)

F.  Simoni, Nonlinear optical properties of liquid crystals (World Scientific, Singapore, 1997).

P. G.  de Gennes, J.  Prost, The physics of liquid crystals (Clarendon Press, Oxford, 2001).

D. A.  Dunmur, A.  Fukuda, G. R.  Luckhurst, Liquid crystals: nematics (INSPEC, London 2001).

I. C.  Khoo, Liquid crystals: physical properties and nonlinear optical phenomena (Wiley and Sons, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Electro-optic mode-mixer: operation principle. The two propagating modes interact in phase for V=Vl (top) and out-of-phase for V=Vh (down) after a distance L.

Fig. 2.
Fig. 2.

Sketch of the electro-optic device: (a) top view, (b) side view. The angle between the major molecular axis (director) and the propagation direction z is θ.

Fig. 3.
Fig. 3.

(a) Refractive index in the cell midpoint versus bias and (b) 2D map of refractive index for V=1V.

Fig. 4.
Fig. 4.

BPM analysis of the switch: (a) plot of the output intensity versus bias and (b) corresponding phase shift; (c) light evolution in the (y,z) plane for V=Vl =0.98V and (d) V=Vh =1.19V.

Fig. 5.
Fig. 5.

Typical experimental results: light propagation in the (y,z) plane for (a) V=Vl =0.98V and (b) V=Vh =1.19V. (c) Corresponding output intensity distributions.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

K 2 θ + Δ ε R F E x 2 2 sin ( 2 θ ) = 0
x [ ( ε cos 2 θ + ε sin 2 θ ) x V ] + ε 2 y 2 V = 0
z a 00 ( z ) = i Q 00 a 00 ( z ) ,
z a 01 ( z ) = i Q 01 a 01 ( z ) ,
Q 00 = ω ε 0 4 Δ n 2 ( x , y ; V ) f 00 2 d x d y ,
Q 01 = ω ε 0 4 Δ n 2 ( x , y ; V ) f 01 2 d x d y
Δ Φ ( z ) = ( ω ε 0 4 η 2 ( x , y ) ( f 00 2 f 01 2 ) d x d y ) γ ( V ) z

Metrics