Abstract

We present experimental results with binary amplitude Fresnel lens arrays and binary phase Fresnel lens arrays used to implement integral imaging systems. Their optical performance is compared with high quality refractive microlens arrays and pinhole arrays in terms of image quality, color distortion and contrast. Additionally, we show the first experimental results of lens arrays with different focal lengths in integral imaging, and discuss their ability to simultaneously increase both the depth of focus and the field of view.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G.  Lippmann, “La photographic intergrale”, C. R. Acad. Sci. 146, 446–451 (1908)
  2. S.-W.  Min, B.  Javidi, B.  Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003)
    [CrossRef] [PubMed]
  3. N.  Davies, M.  McCormick, M.  Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
    [CrossRef]
  4. J.-S.  Jang, B.  Javidi, “Improved viewing resolution of 3-D integral imaging with nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002)
    [CrossRef]
  5. R.  Martínez-Cuenca, G.  Saavedra, M.  Martínez-Corral, B.  Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237–5242 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5237
    [CrossRef] [PubMed]
  6. T.  Motoki, H.  Isono, I.  Yuyama, “Present status of three-dimensional television research,” Proc. IEEE 83, 1009–1021 (1995).
    [CrossRef]
  7. J.S.  Jang, B.  Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Exp. 12, 1077–1083 (2004)
    [CrossRef]
  8. J.-S.  Jang, B.  Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924–1926 (2003)
    [CrossRef] [PubMed]
  9. N.  Davidson, A.A.  Friesem, E.  Hasmann, “Analytic design of hybrid diffractive-refractive achromats,” Appl. Opt. 32, 4770–4774 (1993)
    [CrossRef] [PubMed]
  10. F.P.  Shvartsman, Replication of diffractive optics, SPIE CR49, (Bellingham, 117–137, 1993)
  11. H.  Andersson, M.  Ekberg, S.  Hard, S.  Jacobsson, M.  Larson, T.  Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 29, 4259 (1990)
    [CrossRef] [PubMed]
  12. M. T.  Gale, M.  Rossi, J.  Pedersen, H.  Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Appl. Opt. 33, 3556–3566 (1994)
  13. S.  Martellucci, A.N.  Chester, Diffractive optics and optical Microsystems (Plenum Publishing Corporation, 23–26, 1997)
  14. H.P.  Herzig, Micro-Optics, (Taylor&Francis, 21–29, 1997)
  15. Y.  Frauel, O.  Matoba, E.  Tajahuerce, B.  Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for 3D object recognition,” Appl. Opt. 43, 452–462, (2004).
    [CrossRef] [PubMed]
  16. Y.  Igarishi, H.  Murata, M.  Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
    [CrossRef]
  17. S.  Kishk, B.  Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3528
    [CrossRef] [PubMed]
  18. S.  Hong, J.-S.  Jang, B.  Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-483
    [CrossRef] [PubMed]
  19. S.  Hong, B.  Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579–4588 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4579
    [CrossRef] [PubMed]

2004 (5)

2003 (3)

2002 (1)

1995 (1)

T.  Motoki, H.  Isono, I.  Yuyama, “Present status of three-dimensional television research,” Proc. IEEE 83, 1009–1021 (1995).
[CrossRef]

1994 (2)

M. T.  Gale, M.  Rossi, J.  Pedersen, H.  Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Appl. Opt. 33, 3556–3566 (1994)

N.  Davies, M.  McCormick, M.  Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

1993 (1)

1990 (1)

1978 (1)

Y.  Igarishi, H.  Murata, M.  Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

1908 (1)

G.  Lippmann, “La photographic intergrale”, C. R. Acad. Sci. 146, 446–451 (1908)

Andersson, H.

Brewin, M.

N.  Davies, M.  McCormick, M.  Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Chester, A.N.

S.  Martellucci, A.N.  Chester, Diffractive optics and optical Microsystems (Plenum Publishing Corporation, 23–26, 1997)

Davidson, N.

Davies, N.

N.  Davies, M.  McCormick, M.  Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Ekberg, M.

Frauel, Y.

Friesem, A.A.

Gale, M. T.

M. T.  Gale, M.  Rossi, J.  Pedersen, H.  Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Appl. Opt. 33, 3556–3566 (1994)

Hard, S.

Hasmann, E.

Herzig, H.P.

H.P.  Herzig, Micro-Optics, (Taylor&Francis, 21–29, 1997)

Hong, S.

Igarishi, Y.

Y.  Igarishi, H.  Murata, M.  Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

Isono, H.

T.  Motoki, H.  Isono, I.  Yuyama, “Present status of three-dimensional television research,” Proc. IEEE 83, 1009–1021 (1995).
[CrossRef]

Jacobsson, S.

Jang, J.S.

J.S.  Jang, B.  Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Exp. 12, 1077–1083 (2004)
[CrossRef]

Jang, J.-S.

Javidi, B.

J.S.  Jang, B.  Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Exp. 12, 1077–1083 (2004)
[CrossRef]

R.  Martínez-Cuenca, G.  Saavedra, M.  Martínez-Corral, B.  Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237–5242 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5237
[CrossRef] [PubMed]

S.  Hong, J.-S.  Jang, B.  Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-483
[CrossRef] [PubMed]

S.  Hong, B.  Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579–4588 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4579
[CrossRef] [PubMed]

Y.  Frauel, O.  Matoba, E.  Tajahuerce, B.  Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for 3D object recognition,” Appl. Opt. 43, 452–462, (2004).
[CrossRef] [PubMed]

S.  Kishk, B.  Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3528
[CrossRef] [PubMed]

S.-W.  Min, B.  Javidi, B.  Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003)
[CrossRef] [PubMed]

J.-S.  Jang, B.  Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924–1926 (2003)
[CrossRef] [PubMed]

J.-S.  Jang, B.  Javidi, “Improved viewing resolution of 3-D integral imaging with nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002)
[CrossRef]

Kishk, S.

Larson, M.

Lee, B.

Lippmann, G.

G.  Lippmann, “La photographic intergrale”, C. R. Acad. Sci. 146, 446–451 (1908)

Martellucci, S.

S.  Martellucci, A.N.  Chester, Diffractive optics and optical Microsystems (Plenum Publishing Corporation, 23–26, 1997)

Martínez-Corral, M.

Martínez-Cuenca, R.

Matoba, O.

McCormick, M.

N.  Davies, M.  McCormick, M.  Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Min, S.-W.

Motoki, T.

T.  Motoki, H.  Isono, I.  Yuyama, “Present status of three-dimensional television research,” Proc. IEEE 83, 1009–1021 (1995).
[CrossRef]

Murata, H.

Y.  Igarishi, H.  Murata, M.  Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

Nilsson, T.

Pedersen, J.

M. T.  Gale, M.  Rossi, J.  Pedersen, H.  Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Appl. Opt. 33, 3556–3566 (1994)

Rossi, M.

M. T.  Gale, M.  Rossi, J.  Pedersen, H.  Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Appl. Opt. 33, 3556–3566 (1994)

Saavedra, G.

Schütz, H.

M. T.  Gale, M.  Rossi, J.  Pedersen, H.  Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Appl. Opt. 33, 3556–3566 (1994)

Shvartsman, F.P.

F.P.  Shvartsman, Replication of diffractive optics, SPIE CR49, (Bellingham, 117–137, 1993)

Tajahuerce, E.

Ueda, M.

Y.  Igarishi, H.  Murata, M.  Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

Yuyama, I.

T.  Motoki, H.  Isono, I.  Yuyama, “Present status of three-dimensional television research,” Proc. IEEE 83, 1009–1021 (1995).
[CrossRef]

Appl. Opt. (5)

C. R. Acad. Sci. (1)

G.  Lippmann, “La photographic intergrale”, C. R. Acad. Sci. 146, 446–451 (1908)

Jpn. J. Appl. Phys. (1)

Y.  Igarishi, H.  Murata, M.  Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

Opt. Eng. (1)

N.  Davies, M.  McCormick, M.  Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Opt. Exp. (1)

J.S.  Jang, B.  Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Exp. 12, 1077–1083 (2004)
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. IEEE (1)

T.  Motoki, H.  Isono, I.  Yuyama, “Present status of three-dimensional television research,” Proc. IEEE 83, 1009–1021 (1995).
[CrossRef]

Other (3)

F.P.  Shvartsman, Replication of diffractive optics, SPIE CR49, (Bellingham, 117–137, 1993)

S.  Martellucci, A.N.  Chester, Diffractive optics and optical Microsystems (Plenum Publishing Corporation, 23–26, 1997)

H.P.  Herzig, Micro-Optics, (Taylor&Francis, 21–29, 1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Recording setup

Fig. 2.
Fig. 2.

Reconstruction setup

Fig. 3.
Fig. 3.

Fabricated unit cell with 4 different binary Fresnel lenses

Fig. 4.
Fig. 4.

Magnified outer Fresnel zone rings

Fig. 5.
Fig. 5.

Image resolution of (A) a single phase Fresnel lens and (B) an amplitude Fresnel lens

Fig. 6.
Fig. 6.

White light recorded elemental images using (A) a refractive microlens array, (B) a diffractive phase Fresnel lens array, (C) a diffractive amplitude Fresnel lens array, (D) a pinhole array.

Fig. 7.
Fig. 7.

Visualized chromatic aberrations using color separation of white light recorded elemental images.

Fig. 8.
Fig. 8.

Red light recorded elemental images using (A) a refractive microlens array, (B) a diffractive phase Fresnel lens array, (C) a diffractive amplitude Fresnel lens array, (D) a pinhole array.

Fig. 9.
Fig. 9.

Displayed integral image which was recorded using a phase Fresnel lens array under red light illumination.

Fig. 10.
Fig. 10.

Speckle reduction using a rotating diffuser plate

Fig. 11.
Fig. 11.

Reconstructed elemental images using white backlight display illumination with different lens arrays: (A) refractive micro lens array, (B) diffractive phase Fresnel lens array, (C) diffractive amplitude Fresnel lens array, (D) pinhole array.

Fig. 12.
Fig. 12.

Reconstructed elemental images using red backlight display illumination with different lens arrays: (A) refractive micro lens array, (B) diffractive phase Fresnel lens array, (C) diffractive amplitude Fresnel lens array, (D) pinhole array.

Fig. 13.
Fig. 13.

3D real image without a diffuser plate, reconstructed using the phase Fresnel lens array and red backlight illumination

Tables (2)

Tables Icon

Table 1. Parameters of the multi-focus Fresnel lens array (calculated for reconstruction)

Tables Icon

Table 2. Chromatic aberrations of refractive and diffractive lenses

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

g = L i · f i ̂ ( L i f i )
D i = 4 · λ · L i 2 d i 2
L i + 1 = L i + D i
s i = 2.44 . λ · L i d
η = ( sin ( π N ) π N ) 2
f r = 1 n ( λ ) 1 1 c 1 c 2
f λ = f 0 λ 0 λ
s λ = d · L λ L 0 L λ = d · ( 1 f 0 f λ · g f λ g f 0 )
s λ 0 + Δ λ = d · g · ( Δ λ λ 0 ) ( g f 0 )
S ratio = s λ 0 + Δ λ s λ 0 = d 2 . Δ λ 2.44 . f 0 . λ 0 2 = 10
Δ λ = 24.4 · λ 0 2 · f 0 d 2

Metrics