Abstract

Cross-gain modulation between pairs of counter-propagating pulses within a semiconductor optical amplifier is used as a pulse delay detector. Unlike previous designs based on differential photodiodes, the difference between average powers of the pulse trains after propagation are deduced from the voltage difference between two contacts on the SOA, eliminating the photodiodes and two optical couplers. Simulations show the design can be improved by adding a third contact. The linearity, sensitivity and noise performance of the design equal or surpass the original design.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic integrated circuit as a picosecond pulse timing discriminator

Arthur James Lowery and Leimeng Zhuang
Opt. Express 24(8) 8776-8781 (2016)

Design and simulation of a simple laser rangefinder using a semiconductor optical amplifier-detector

Arthur James Lowery and Malin Premaratne
Opt. Express 13(10) 3647-3652 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. Kawanishi and M. Saruwatari “Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser diode amplifier,” J. Lightwave Technol. 11, 2123–2129 (1993).
    [Crossref]
  2. E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
    [Crossref]
  3. Arthur Lowery “Active Photonic Integrated Circuits,” in Optoelectronic Devices-Advanced Simulation and Analysis, J. Piprek ed. (Springer Verlag, Berlin, 2005)
    [Crossref]
  4. Ivan Kaminow and Rodney S. Tucker, Chapter 5 in Guided-wave optoelectronics, T. Tamirk ed. (Springer Verlag, New York, 1988)
  5. R. M. Fortenberry, A. J. Lowery, and R. S. Tucker “Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector,” Electron. Lett. 28, 474–476 (1992).
    [Crossref]
  6. T. Rampone, H-W Li, and A. Sharaiha “Semiconductor optical amplifier used as an in-line detector with the signal DC-component conservation,” J. Lightwave Technol. 16, 1295–1301 (1998).
    [Crossref]

2002 (1)

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
[Crossref]

1998 (1)

1993 (1)

S. Kawanishi and M. Saruwatari “Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser diode amplifier,” J. Lightwave Technol. 11, 2123–2129 (1993).
[Crossref]

1992 (1)

R. M. Fortenberry, A. J. Lowery, and R. S. Tucker “Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector,” Electron. Lett. 28, 474–476 (1992).
[Crossref]

Awad, E. S.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
[Crossref]

Cho, P. S.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
[Crossref]

Fortenberry, R. M.

R. M. Fortenberry, A. J. Lowery, and R. S. Tucker “Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector,” Electron. Lett. 28, 474–476 (1992).
[Crossref]

Goldhar, J.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
[Crossref]

Kaminow, Ivan

Ivan Kaminow and Rodney S. Tucker, Chapter 5 in Guided-wave optoelectronics, T. Tamirk ed. (Springer Verlag, New York, 1988)

Kawanishi, S.

S. Kawanishi and M. Saruwatari “Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser diode amplifier,” J. Lightwave Technol. 11, 2123–2129 (1993).
[Crossref]

Li, H-W

Lowery, A. J.

R. M. Fortenberry, A. J. Lowery, and R. S. Tucker “Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector,” Electron. Lett. 28, 474–476 (1992).
[Crossref]

Lowery, Arthur

Arthur Lowery “Active Photonic Integrated Circuits,” in Optoelectronic Devices-Advanced Simulation and Analysis, J. Piprek ed. (Springer Verlag, Berlin, 2005)
[Crossref]

Moulton, N.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
[Crossref]

Rampone, T.

Richardson, C. J. K.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
[Crossref]

Saruwatari, M.

S. Kawanishi and M. Saruwatari “Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser diode amplifier,” J. Lightwave Technol. 11, 2123–2129 (1993).
[Crossref]

Sharaiha, A.

Tucker, R. S.

R. M. Fortenberry, A. J. Lowery, and R. S. Tucker “Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector,” Electron. Lett. 28, 474–476 (1992).
[Crossref]

Tucker, Rodney S.

Ivan Kaminow and Rodney S. Tucker, Chapter 5 in Guided-wave optoelectronics, T. Tamirk ed. (Springer Verlag, New York, 1988)

Electron. Lett. (1)

R. M. Fortenberry, A. J. Lowery, and R. S. Tucker “Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector,” Electron. Lett. 28, 474–476 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photonics Technol. Lett. 14, 396–398 (2002).
[Crossref]

J. Lightwave Technol. (2)

T. Rampone, H-W Li, and A. Sharaiha “Semiconductor optical amplifier used as an in-line detector with the signal DC-component conservation,” J. Lightwave Technol. 16, 1295–1301 (1998).
[Crossref]

S. Kawanishi and M. Saruwatari “Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser diode amplifier,” J. Lightwave Technol. 11, 2123–2129 (1993).
[Crossref]

Other (2)

Arthur Lowery “Active Photonic Integrated Circuits,” in Optoelectronic Devices-Advanced Simulation and Analysis, J. Piprek ed. (Springer Verlag, Berlin, 2005)
[Crossref]

Ivan Kaminow and Rodney S. Tucker, Chapter 5 in Guided-wave optoelectronics, T. Tamirk ed. (Springer Verlag, New York, 1988)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Design of SOA delay discriminator by Awad et al. (optical filters not shown).

Fig. 2.
Fig. 2.

Twin-contact design using voltages on contacts to detect delay.

Fig. 3.
Fig. 3.

Simplified Schematic from VPIcomponentMaker Active Photonics simulator.

Fig. 4.
Fig. 4.

Differential photocurrent for a sinusoidal variation in pulse delay.

Fig. 5.
Fig. 5.

Differential contact voltage for the same variation as in Fig. 4.

Fig. 6.
Fig. 6.

RMS variation of differential contact voltage versus center contact length.

Fig. 7.
Fig. 7.

Linearity of the photodiode and contact schemes.

Fig. 8.
Fig. 8.

RF spectrum from the differential photodiodes (left) and differential contacts (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = η ( kT q ) ln ( N N i )

Metrics