Abstract

Wavefront correctors have yet to provide diffraction-limited imaging through the human eye’s ocular media for large pupils (≥6 mm). To guide future improvements in corrector designs that might enable such imaging, we have modeled the performance of segmented piston correctors in conjunction with measured wave aberration data of normal human eyes (mean=34.2 yr; stdev=10.6 yr). The model included the effects of pupil size and wavelength in addition to dispersion, phase wrapping, and number and arrangement of facets in the corrector. Results indicate that ≤100×100 facets are needed to reach diffraction-limited performance for pupils up to 8 mm (extrapolated) at 0.6 µm wavelength. Required facet density for the eye was found to be substantially higher at the pupil’s edge than at its center, which is in stark contrast to the requirements for correcting atmospheric turbulence. Substantially more facets are required at shorter wavelengths with performance highly sensitive to facet fill. In polychromatic light, the performance of segmented correctors based on liquid crystal technology was limited by the naturally occurring longitudinal chromatic aberration of the eye rather than phase wrapping and dispersion of the liquid crystal. Required facets to correct defocus alone was found highly sensitive to pupil size and decentration.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K.  Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).
  2. J. W.  Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, New York, 1998).
  3. A. W.  Dreher, J. F.  Bille, R. N.  Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 24, 804–808 (1989).
    [CrossRef]
  4. J.  Liang, D. R.  Williams, D. T.  Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  5. H.  Hofer, L.  Chen, G. Y.  Yoon, B.  Singer, Y.  Yamauchi, D. R.  Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631.
    [CrossRef] [PubMed]
  6. A.  Roorda, F.  Romero-Borja, W. J.  Donnelly, H.  Queener, T. J.  Hebert, M. C. W.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405.
    [PubMed]
  7. D. T.  Miller, J.  Qu, R. S.  Jonnal, K.  Thorn, “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII , V. V.  Tuchin, J. A.  Izatt, J. G.  Fujimoto, eds., Proc. SPIE 4956, 65–72 (2003).
  8. J.  Carroll, M.  Neitz, H.  Hofer, J.  Neitz, D. R.  Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA 101, 8461–8466 (2004).
    [CrossRef] [PubMed]
  9. N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).
  10. N.  Doble, G.  Yoon, L.  Chen, P.  Bierden, B.  Singer, S.  Olivier, D. R.  Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
    [CrossRef]
  11. L.  Zhu, P-C  Sun, D-U  Bartsch, W. R.  Freeman, Y.  Fainman, “Adaptive control of a micromachined continuous membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
    [CrossRef]
  12. B.  Hermann, E. J.  Fernández, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [CrossRef] [PubMed]
  13. E. J.  Fernández, I  Iglesias, P.  Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  14. L.  Diaz-Santana, C.  Torti, I.  Munro, P.  Gasson, C.  Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597.
    [CrossRef] [PubMed]
  15. M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
    [CrossRef]
  16. L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
    [CrossRef]
  17. F.  Vargas-Martin, P. M.  Prieto, P.  Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [CrossRef]
  18. T.  Shirai, “Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging,” Appl. Opt. 41, 4013–4023 (2002).
    [CrossRef] [PubMed]
  19. A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).
  20. P. M.  Prieto, E. J.  Fernández, S.  Manzanera, P.  Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059.
    [CrossRef] [PubMed]
  21. H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.
  22. M. P.  Cagigal, V. F.  Canales, J. F.  Casteján-Mochán, P. M.  Prieto, N.  López-Gil, P.  Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
    [CrossRef]
  23. R.  Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. 67, 393–395 (1977).
    [CrossRef]
  24. M.  Loktev, D.W.D  Monteiro, G.  Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Comm. 192, 91–99 (2001).
    [CrossRef]
  25. M. C.  Roggemann, B.  Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla, 1996).
  26. W. B.  King, “Dependence of the Strehl ratio on the magnitude of the variance of the wave aberration”, J. Opt. Soc. Am. 58, 655–661 (1967).
    [CrossRef]
  27. L. N.  Thibos, X.  Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76, 817–825 (1999).
    [CrossRef] [PubMed]
  28. N.  Davies, L.  Diaz-Santana, D.  Lara-Saucedo, “Repeatability of ocular wavefront measurement,” Optom. Vis. Sci. 80, 142–150 (2003).
    [CrossRef] [PubMed]
  29. ANSI, American National Standard for the Safe Use of Lasers, ANSI Z136.1-1993 (Laser Institute of America, Orlando, FL, 1993).
  30. L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]
  31. H. C.  Howland, “High order wave aberration of eyes,” Ophthalmic Physiol. Opt. 22, 434–439 (2002).
    [CrossRef] [PubMed]
  32. G. D.  Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1534 (1997).
    [CrossRef] [PubMed]
  33. Shin-Tson  Wu, “Birefringence dispersions of liquid crystals,” Physical Review A 33, 1270–1274 (1986).
    [CrossRef] [PubMed]
  34. L. N.  Thibos, M.  Ye, X.  Zhang, A.  Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [CrossRef] [PubMed]
  35. L.  Llorente, L.  Diaz-Santana, D.  Lara-Saucedo, S.  Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
    [CrossRef]
  36. M. C.  Rynders, B. A.  Lidkea, W. J.  Chisholm, L. N.  Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
    [CrossRef]
  37. S.  Marcos, S. A.  Burns, E.  Moreno-Barriusop, R.  Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [CrossRef]
  38. L. N.  Thibos, X.  Hong, A.  Bradley, R. A.  Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
    [PubMed]

2004 (5)

J.  Carroll, M.  Neitz, H.  Hofer, J.  Neitz, D. R.  Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA 101, 8461–8466 (2004).
[CrossRef] [PubMed]

B.  Hermann, E. J.  Fernández, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[CrossRef]

P. M.  Prieto, E. J.  Fernández, S.  Manzanera, P.  Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059.
[CrossRef] [PubMed]

L. N.  Thibos, X.  Hong, A.  Bradley, R. A.  Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]

2003 (4)

L.  Llorente, L.  Diaz-Santana, D.  Lara-Saucedo, S.  Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

N.  Davies, L.  Diaz-Santana, D.  Lara-Saucedo, “Repeatability of ocular wavefront measurement,” Optom. Vis. Sci. 80, 142–150 (2003).
[CrossRef] [PubMed]

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

L.  Diaz-Santana, C.  Torti, I.  Munro, P.  Gasson, C.  Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597.
[CrossRef] [PubMed]

2002 (6)

2001 (3)

1999 (3)

L.  Zhu, P-C  Sun, D-U  Bartsch, W. R.  Freeman, Y.  Fainman, “Adaptive control of a micromachined continuous membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
[CrossRef]

L. N.  Thibos, X.  Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76, 817–825 (1999).
[CrossRef] [PubMed]

S.  Marcos, S. A.  Burns, E.  Moreno-Barriusop, R.  Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

1998 (1)

1997 (3)

1995 (1)

1992 (1)

1989 (1)

1986 (1)

Shin-Tson  Wu, “Birefringence dispersions of liquid crystals,” Physical Review A 33, 1270–1274 (1986).
[CrossRef] [PubMed]

1977 (1)

1967 (1)

Applegate, R. A.

L. N.  Thibos, X.  Hong, A.  Bradley, R. A.  Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]

Artal, P.

Awwal, A.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

Barnes, T.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

Bartsch, D-U

Bauman, B.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

Bierden, P.

Bille, J. F.

Bradley, A.

L. N.  Thibos, X.  Hong, A.  Bradley, R. A.  Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]

L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

L. N.  Thibos, M.  Ye, X.  Zhang, A.  Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.

Burns, S. A.

S.  Marcos, S. A.  Burns, E.  Moreno-Barriusop, R.  Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Cagigal, M. P.

Campbell, M. C. W.

Canales, V. F.

Carroll, J.

J.  Carroll, M.  Neitz, H.  Hofer, J.  Neitz, D. R.  Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Casteján-Mochán, J. F.

Chen, L.

Cheng, X.

L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.

Chisholm, W. J.

Dainty, C.

Davies, N.

N.  Davies, L.  Diaz-Santana, D.  Lara-Saucedo, “Repeatability of ocular wavefront measurement,” Optom. Vis. Sci. 80, 142–150 (2003).
[CrossRef] [PubMed]

Diaz-Santana, L.

N.  Davies, L.  Diaz-Santana, D.  Lara-Saucedo, “Repeatability of ocular wavefront measurement,” Optom. Vis. Sci. 80, 142–150 (2003).
[CrossRef] [PubMed]

L.  Llorente, L.  Diaz-Santana, D.  Lara-Saucedo, S.  Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

L.  Diaz-Santana, C.  Torti, I.  Munro, P.  Gasson, C.  Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597.
[CrossRef] [PubMed]

Doble, N.

Donnelly, W. J.

Dreher, A. W.

Drexler, W.

Fainman, Y.

Fercher, A. F.

Fernández, E. J.

Freeman, W. R.

Gasson, P.

Gavel, D.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

Gendron, E.

M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[CrossRef]

Glanc, M.

M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[CrossRef]

Hardy, J. L.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

Hardy, J. W.

J. W.  Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, New York, 1998).

Hebert, T. J.

Hermann, B.

Himebaugh, N.

H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.

Hofer, H.

J.  Carroll, M.  Neitz, H.  Hofer, J.  Neitz, D. R.  Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA 101, 8461–8466 (2004).
[CrossRef] [PubMed]

H.  Hofer, L.  Chen, G. Y.  Yoon, B.  Singer, Y.  Yamauchi, D. R.  Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631.
[CrossRef] [PubMed]

Hong, X.

L. N.  Thibos, X.  Hong, A.  Bradley, R. A.  Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]

L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

L. N.  Thibos, X.  Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76, 817–825 (1999).
[CrossRef] [PubMed]

H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.

Howland, H. C.

H. C.  Howland, “High order wave aberration of eyes,” Ophthalmic Physiol. Opt. 22, 434–439 (2002).
[CrossRef] [PubMed]

Hu, Y.

N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).

Hudgin, R.

Iglesias, I

Jiang, W.

N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).

Jones, S.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

Jonnal, R. S.

D. T.  Miller, J.  Qu, R. S.  Jonnal, K.  Thorn, “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII , V. V.  Tuchin, J. A.  Izatt, J. G.  Fujimoto, eds., Proc. SPIE 4956, 65–72 (2003).

King, W. B.

Lacombe, F.

M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[CrossRef]

Lafaille, D.

M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[CrossRef]

Lara-Saucedo, D.

N.  Davies, L.  Diaz-Santana, D.  Lara-Saucedo, “Repeatability of ocular wavefront measurement,” Optom. Vis. Sci. 80, 142–150 (2003).
[CrossRef] [PubMed]

L.  Llorente, L.  Diaz-Santana, D.  Lara-Saucedo, S.  Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

Le Gargasson, J.-F.

M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[CrossRef]

Léna, P.

M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[CrossRef]

Li, X.

N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).

Liang, J.

Lidkea, B. A.

Ling, N.

N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).

Llorente, L.

L.  Llorente, L.  Diaz-Santana, D.  Lara-Saucedo, S.  Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

Loktev, M.

M.  Loktev, D.W.D  Monteiro, G.  Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Comm. 192, 91–99 (2001).
[CrossRef]

López-Gil, N.

Love, G. D.

Manzanera, S.

Marcos, S.

L.  Llorente, L.  Diaz-Santana, D.  Lara-Saucedo, S.  Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

S.  Marcos, S. A.  Burns, E.  Moreno-Barriusop, R.  Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Miller, D. T.

J.  Liang, D. R.  Williams, D. T.  Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T.  Miller, J.  Qu, R. S.  Jonnal, K.  Thorn, “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII , V. V.  Tuchin, J. A.  Izatt, J. G.  Fujimoto, eds., Proc. SPIE 4956, 65–72 (2003).

H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.

Monteiro, D.W.D

M.  Loktev, D.W.D  Monteiro, G.  Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Comm. 192, 91–99 (2001).
[CrossRef]

Moreno-Barriusop, E.

S.  Marcos, S. A.  Burns, E.  Moreno-Barriusop, R.  Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Munro, I.

Navarro, R.

S.  Marcos, S. A.  Burns, E.  Moreno-Barriusop, R.  Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Neitz, J.

J.  Carroll, M.  Neitz, H.  Hofer, J.  Neitz, D. R.  Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Neitz, M.

J.  Carroll, M.  Neitz, H.  Hofer, J.  Neitz, D. R.  Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Olivier, S.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

N.  Doble, G.  Yoon, L.  Chen, P.  Bierden, B.  Singer, S.  Olivier, D. R.  Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
[CrossRef]

Prieto, P. M.

Qu, J.

D. T.  Miller, J.  Qu, R. S.  Jonnal, K.  Thorn, “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII , V. V.  Tuchin, J. A.  Izatt, J. G.  Fujimoto, eds., Proc. SPIE 4956, 65–72 (2003).

Queener, H.

Rao, X.

N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).

Roggemann, M. C.

M. C.  Roggemann, B.  Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla, 1996).

Romero-Borja, F.

Roorda, A.

Rynders, M. C.

Sattmann, H.

Shirai, T.

Silva, D.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

Singer, B.

Sun, P-C

Thibos, L. N.

L. N.  Thibos, X.  Hong, A.  Bradley, R. A.  Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]

L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

L. N.  Thibos, X.  Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76, 817–825 (1999).
[CrossRef] [PubMed]

L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

M. C.  Rynders, B. A.  Lidkea, W. J.  Chisholm, L. N.  Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
[CrossRef]

L. N.  Thibos, M.  Ye, X.  Zhang, A.  Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.

Thorn, K.

D. T.  Miller, J.  Qu, R. S.  Jonnal, K.  Thorn, “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII , V. V.  Tuchin, J. A.  Izatt, J. G.  Fujimoto, eds., Proc. SPIE 4956, 65–72 (2003).

Torti, C.

Tyson, R. K.

R. K.  Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).

Unterhuber, A.

Vargas-Martin, F.

Vdovin, G.

M.  Loktev, D.W.D  Monteiro, G.  Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Comm. 192, 91–99 (2001).
[CrossRef]

Wang, C.

N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).

Weinreb, R. N.

Welsh, B.

M. C.  Roggemann, B.  Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla, 1996).

Werner, J. S.

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

Williams, D. R.

Wu, Shin-Tson

Shin-Tson  Wu, “Birefringence dispersions of liquid crystals,” Physical Review A 33, 1270–1274 (1986).
[CrossRef] [PubMed]

Yamauchi, Y.

Ye, M.

Yoon, G.

Yoon, G. Y.

Zhang, X.

Zhang, Y.

N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).

Zhao, H.

H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.

Zhu, L.

Appl. Opt. (5)

in Astronomical Adaptive Optics Systems and Applications Proc. SPIE (1)

A.  Awwal, B.  Bauman, D.  Gavel, S.  Olivier, S.  Jones, D.  Silva, J. L.  Hardy, T.  Barnes, J. S.  Werner, “Characterization and operation of a liquid crystal adaptive optics phoropter,” in Astronomical Adaptive Optics Systems and Applications , R. K.  Tyson, M.  Lloyd-Hart, eds., Proc. SPIE 5169, 104–122 (2003).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Vis. (1)

L. N.  Thibos, X.  Hong, A.  Bradley, R. A.  Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]

Ophthalmic Physiol. Opt. (1)

H. C.  Howland, “High order wave aberration of eyes,” Ophthalmic Physiol. Opt. 22, 434–439 (2002).
[CrossRef] [PubMed]

Opt. Comm. (2)

M.  Loktev, D.W.D  Monteiro, G.  Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Comm. 192, 91–99 (2001).
[CrossRef]

M.  Glanc, E.  Gendron, F.  Lacombe, D.  Lafaille, J.-F.  Le Gargasson, P.  Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Optom. Vis. Sci. (2)

L. N.  Thibos, X.  Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76, 817–825 (1999).
[CrossRef] [PubMed]

N.  Davies, L.  Diaz-Santana, D.  Lara-Saucedo, “Repeatability of ocular wavefront measurement,” Optom. Vis. Sci. 80, 142–150 (2003).
[CrossRef] [PubMed]

Optom. Vision Sci. (2)

L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

L.  Llorente, L.  Diaz-Santana, D.  Lara-Saucedo, S.  Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

Physical Review A (1)

Shin-Tson  Wu, “Birefringence dispersions of liquid crystals,” Physical Review A 33, 1270–1274 (1986).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

J.  Carroll, M.  Neitz, H.  Hofer, J.  Neitz, D. R.  Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. USA 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Vision Res. (1)

S.  Marcos, S. A.  Burns, E.  Moreno-Barriusop, R.  Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Other (7)

N.  Ling, Y.  Zhang, X.  Rao, X.  Li, C.  Wang, Y.  Hu, W.  Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV , J. D.  Gonglewski, M. A.  Vorontsov, M. T.  Gruneisen, S. R.  Restaino, R. K.  Tyson, eds., Proc. SPIE 4825, 99–108 (2002).

R. K.  Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).

J. W.  Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, New York, 1998).

D. T.  Miller, J.  Qu, R. S.  Jonnal, K.  Thorn, “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII , V. V.  Tuchin, J. A.  Izatt, J. G.  Fujimoto, eds., Proc. SPIE 4956, 65–72 (2003).

H.  Zhao, D. T.  Miller, L. N.  Thibos, X.  Hong, A.  Bradley, X.  Cheng, N.  Himebaugh, “A Fried’s parameter for the human eye?,” presented at the Optical Society of America Annual Meeting, Provident, Rhode Island, 22–26 Oct. 2000.

M. C.  Roggemann, B.  Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla, 1996).

ANSI, American National Standard for the Safe Use of Lasers, ANSI Z136.1-1993 (Laser Institute of America, Orlando, FL, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Log10(wavefront variance) plotted as a function of Zernike order. The 12 red curves represent each of the measured 12 eyes used in this study. The blue diamonds and two dashed curves represent the mean and mean ± two times the standard deviation of the log10(wavefront variance), respectively, for the 200 eyes measured in the IU Aberration Study.

Fig. 2.
Fig. 2.

Compensation of ocular aberrations across a 6 mm circular pupil using two hexagonally-packed correctors with 12 (top row) and 48 (bottom row) facets across their pupil diameter. Wavefront phase is represented by a gray-scale image (black and white tones depict minimum and maximum phase, respectively). (a) shows the measured uncorrected wave aberrations for one subject’s eye with defocus and astigmatism removed. The phase RMS is 0.37λ. (b) shows the desired phase profile across two correctors for compensating the subject’s wave aberrations in (a). (c) shows the residual aberrations after correction of the wave aberrations in (a) with the corrector phase profile in (b). The residual phase RMS is 0.12λ (top) and 0.04λ (bottom). The corresponding corrected point spreads and Strehl values are given in (d) that were computed using scalar diffraction theory that incorporated the residual wave aberrations and a circular pupil. λ is 0.6 µm.

Fig. 3.
Fig. 3.

Subject’s point spread calculated from the measured wave aberration shown in Fig. 2(a)

Fig. 4.
Fig. 4.

Corrected Strehl ratio for (red) hexagonally- and (green) square-packed segmented correctors as a function of facet number. Pupil diameter and λ were set to 6 mm and 0.6 µm, respectively. Top two curves do not include the impact of the residual defocus and astigmatism, which were left uncorrected by trial lenses. Bottom two curves include defocus and astigmatism. Error bars represent ±1 standard deviation across the 12 subjects.

Fig. 5.
Fig. 5.

Number of facets required to achieve diffraction-limited imaging (Strehl=0.8) along two orthogonal axes in D-λ space. The two axes are λ=0.6 µm (left) and D=6 mm (right). Simulation results were fit to λ -6/5 and third-order polynomial functions.

Fig. 6.
Fig. 6.

Corrected Strehl ratio for facet fill of 73.5%, 86%, and 100% as a function of facet number for a square-packed segmented corrector. Pupil diameter and λ were 6 mm and 0.6 µm, respectively. Residual defocus and astigmatism was present. Error bars represent ±1 standard deviation across the 12 subjects

Fig. 7.
Fig. 7.

Average SLM performance on human eyes using polychromatic light for 3 (left) and 6 mm (right) pupils. The color-coded curves represent the performance of four SLM types that correspond to the four possible combinations of dispersion and phase wrapping. Dispersion was that of the liquid crystal material E-7. Phase wrapping was modulo 2π for λdesign =0.6 µm. Facet size was set to a single pixel. The black curves represent the performance of the diffraction-limited eye corrupted only by the eye’s naturally occurring longitudinal chromatic aberration. The design wavelength, λdesign , was 0.6 µm.

Fig. 8.
Fig. 8.

Corrected Strehl for various amounts of defocus (0, 1/16, 1/8, 1/4, 1/2, 1, 2, and 4 diopters) as a function of facet number for 3 mm (left) and 6 mm (right) pupils. Facets were hexagonally-packed with 100% fill, and λ was 0.6 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ residual ( λ ) = ϕ eye ( λ ) ϕ SLM ( λ ) ,
ϕ eye ( λ ) = ϕ eye ( λ design ) λ design λ ϕ LCA
ϕ SLM ( λ ) = ϕ SLM ( λ design ) Δ n ( λ ) Δ n ( λ design ) λ design λ ,
Δ n ( λ ) = G ( λ λ * ) 2 λ 2 λ * 2 ,

Metrics