Abstract

Hollow-core photonic crystal fibres have excited interest as potential ultra-low loss telecommunications fibres because light propagates mainly in air instead of solid glass. We propose that the ultimate limit to the attenuation of such fibres is determined by surface roughness due to frozenin capillary waves. This is confirmed by measurements of the surface roughness in a HC-PCF, the angular distribution of the power scattered out of the core, and the wavelength dependence of the minimum loss of fibres drawn to different scales.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St.J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  2. R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  3. C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [CrossRef] [PubMed]
  4. J. A.  West, C. M.  Smith, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485.
    [CrossRef] [PubMed]
  5. B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.
  6. K.  Nagayama, M.  Kakui, M.  Matsui, I.  Saitoh, Y.  Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38, 1168–1169 (2002).
    [CrossRef]
  7. T.  Miya, Y.  Terunuma, T.  Hosaka, T.  Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15, 106–108 (1979).
    [CrossRef]
  8. M.  Ohashi, K.  Shiraki, K.  Tajima, “Optical loss property of silica-based single-mode fibers,” IEEE J. Lightwave Technol. 10, 539–543 (1992).
    [CrossRef]
  9. M. K.  Sanyal, S. K.  Sinha, K. G.  Huang, B. M.  Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66, 628–631 (1991).
    [CrossRef] [PubMed]
  10. A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
    [CrossRef]
  11. T.  Seydel, A.  Madsen, M.  Tolan, G.  Grübel, W.  Press, “Capillary waves in slow motion,” Phys. Rev. B 63, 073409 (2001).
    [CrossRef]
  12. J.  Jäckle, K.  Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys.: Condens. Matter 7, 4351–4358 (1995).
    [CrossRef]
  13. P. K.  Gupta, D.  Inniss, C. R.  Kurkjian, Q.  Zhong, “Nanoscale roughness of oxide glass surfaces,” J. Non-Cryst. Solids 262, 200–206 (2000).
    [CrossRef]
  14. R.  Brückner, “Properties and structure of vitreous silica I,” J. Non-Cryst. Solids 5, 123–175 (1970).
    [CrossRef]
  15. N. P.  Bansal, R. H.  Doremus, Handbook of Glass Properties (Academic Press, Orlando, 1986).
  16. A. W.  Sn yder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  17. J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).
  18. F. P.  Payne, J. P. R.  Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [CrossRef]
  19. A.  Roder, W.  Kob, K.  Binder, “Structure and dynamics of amorphous silica surfaces,” J. Chem. Phys. 114, 7602–7614 (2001).
    [CrossRef]
  20. A. D.  Fitt, K.  Furusawa, T. M.  Monro, C. P.  Please, D. J.  Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
    [CrossRef]
  21. A. L.  Yarin, P.  Gospodinov, V. I.  Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys. Fluids 6, 1454–1463 (1994).
    [CrossRef]
  22. M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–1010 (1999).
    [CrossRef]
  23. F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.
  24. J.  Hecht Understanding Fiber Optics (Prentice Hall, Columbus, 1999).
  25. N. M.  Litchinit ser, A. K.  Abeeluck, C.  Headley, B. J.  Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [CrossRef]
  26. A.  Kucuk, A. G.  Clare, L.  Jones, “An estimation of the surface tension for silicate glass melts at 1400 °C using statistical analysis,” Glass Technol. 40, 149–153 (1999).
  27. N. M.  Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958).
    [CrossRef]
  28. S. D.  Hart, G. R.  Maskaly, B.  Temelkuran, P. H.  Prideaux, J. D.  Joannopoulos, Y.  Fink, “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510–513 (2002).
    [CrossRef] [PubMed]
  29. K.  Kuriki, O.  Shapira, S. D.  Hart, G.  Benoit, Y.  Kuriki, J. F.  Viens, M.  Bayindir, J. D.  Joannopoulos, Y.  Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510.
    [CrossRef] [PubMed]

2004 (2)

2003 (2)

P. St.J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

2002 (4)

K.  Nagayama, M.  Kakui, M.  Matsui, I.  Saitoh, Y.  Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38, 1168–1169 (2002).
[CrossRef]

A. D.  Fitt, K.  Furusawa, T. M.  Monro, C. P.  Please, D. J.  Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

N. M.  Litchinit ser, A. K.  Abeeluck, C.  Headley, B. J.  Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[CrossRef]

S. D.  Hart, G. R.  Maskaly, B.  Temelkuran, P. H.  Prideaux, J. D.  Joannopoulos, Y.  Fink, “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

2001 (2)

A.  Roder, W.  Kob, K.  Binder, “Structure and dynamics of amorphous silica surfaces,” J. Chem. Phys. 114, 7602–7614 (2001).
[CrossRef]

T.  Seydel, A.  Madsen, M.  Tolan, G.  Grübel, W.  Press, “Capillary waves in slow motion,” Phys. Rev. B 63, 073409 (2001).
[CrossRef]

2000 (1)

P. K.  Gupta, D.  Inniss, C. R.  Kurkjian, Q.  Zhong, “Nanoscale roughness of oxide glass surfaces,” J. Non-Cryst. Solids 262, 200–206 (2000).
[CrossRef]

1999 (4)

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–1010 (1999).
[CrossRef]

A.  Kucuk, A. G.  Clare, L.  Jones, “An estimation of the surface tension for silicate glass melts at 1400 °C using statistical analysis,” Glass Technol. 40, 149–153 (1999).

1995 (1)

J.  Jäckle, K.  Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys.: Condens. Matter 7, 4351–4358 (1995).
[CrossRef]

1994 (2)

F. P.  Payne, J. P. R.  Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

A. L.  Yarin, P.  Gospodinov, V. I.  Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys. Fluids 6, 1454–1463 (1994).
[CrossRef]

1992 (1)

M.  Ohashi, K.  Shiraki, K.  Tajima, “Optical loss property of silica-based single-mode fibers,” IEEE J. Lightwave Technol. 10, 539–543 (1992).
[CrossRef]

1991 (1)

M. K.  Sanyal, S. K.  Sinha, K. G.  Huang, B. M.  Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66, 628–631 (1991).
[CrossRef] [PubMed]

1979 (1)

T.  Miya, Y.  Terunuma, T.  Hosaka, T.  Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

1970 (1)

R.  Brückner, “Properties and structure of vitreous silica I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

1958 (1)

N. M.  Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958).
[CrossRef]

Abeeluck, A. K.

Allan, D. C.

J. A.  West, C. M.  Smith, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485.
[CrossRef] [PubMed]

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Bansal, N. P.

N. P.  Bansal, R. H.  Doremus, Handbook of Glass Properties (Academic Press, Orlando, 1986).

Bayindir, M.

Benoit, G.

Binder, K.

A.  Roder, W.  Kob, K.  Binder, “Structure and dynamics of amorphous silica surfaces,” J. Chem. Phys. 114, 7602–7614 (2001).
[CrossRef]

Birks, T. A.

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Borrelli, N. F.

J. A.  West, C. M.  Smith, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485.
[CrossRef] [PubMed]

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Brückner, R.

R.  Brückner, “Properties and structure of vitreous silica I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

Chigusa, Y.

K.  Nagayama, M.  Kakui, M.  Matsui, I.  Saitoh, Y.  Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38, 1168–1169 (2002).
[CrossRef]

Clare, A. G.

A.  Kucuk, A. G.  Clare, L.  Jones, “An estimation of the surface tension for silicate glass melts at 1400 °C using statistical analysis,” Glass Technol. 40, 149–153 (1999).

Couny, F.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

Coupland, S.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Cregan, R. F.

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Di Giovanni, D. J.

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–1010 (1999).
[CrossRef]

Doerr, A. K.

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Doremus, R. H.

N. P.  Bansal, R. H.  Doremus, Handbook of Glass Properties (Academic Press, Orlando, 1986).

Eggleton, B. J.

Farr, L.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

Fink, Y.

Fitt, A. D.

A. D.  Fitt, K.  Furusawa, T. M.  Monro, C. P.  Please, D. J.  Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Flea, R.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Furusawa, K.

A. D.  Fitt, K.  Furusawa, T. M.  Monro, C. P.  Please, D. J.  Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Gallagher, M. T.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Gospodinov, P.

A. L.  Yarin, P.  Gospodinov, V. I.  Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys. Fluids 6, 1454–1463 (1994).
[CrossRef]

Grübel, G.

T.  Seydel, A.  Madsen, M.  Tolan, G.  Grübel, W.  Press, “Capillary waves in slow motion,” Phys. Rev. B 63, 073409 (2001).
[CrossRef]

Gupta, P. K.

P. K.  Gupta, D.  Inniss, C. R.  Kurkjian, Q.  Zhong, “Nanoscale roughness of oxide glass surfaces,” J. Non-Cryst. Solids 262, 200–206 (2000).
[CrossRef]

Hamblin, J. R.

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–1010 (1999).
[CrossRef]

Hart, S. D.

Headley, C.

Hecht, J.

J.  Hecht Understanding Fiber Optics (Prentice Hall, Columbus, 1999).

Hosaka, T.

T.  Miya, Y.  Terunuma, T.  Hosaka, T.  Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

Huang, K. G.

M. K.  Sanyal, S. K.  Sinha, K. G.  Huang, B. M.  Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66, 628–631 (1991).
[CrossRef] [PubMed]

Inniss, D.

P. K.  Gupta, D.  Inniss, C. R.  Kurkjian, Q.  Zhong, “Nanoscale roughness of oxide glass surfaces,” J. Non-Cryst. Solids 262, 200–206 (2000).
[CrossRef]

Jäckle, J.

J.  Jäckle, K.  Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys.: Condens. Matter 7, 4351–4358 (1995).
[CrossRef]

Joannopoulos, J. D.

K.  Kuriki, O.  Shapira, S. D.  Hart, G.  Benoit, Y.  Kuriki, J. F.  Viens, M.  Bayindir, J. D.  Joannopoulos, Y.  Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510.
[CrossRef] [PubMed]

S. D.  Hart, G. R.  Maskaly, B.  Temelkuran, P. H.  Prideaux, J. D.  Joannopoulos, Y.  Fink, “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

Jones, L.

A.  Kucuk, A. G.  Clare, L.  Jones, “An estimation of the surface tension for silicate glass melts at 1400 °C using statistical analysis,” Glass Technol. 40, 149–153 (1999).

Kakui, M.

K.  Nagayama, M.  Kakui, M.  Matsui, I.  Saitoh, Y.  Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38, 1168–1169 (2002).
[CrossRef]

Kawasaki, K.

J.  Jäckle, K.  Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys.: Condens. Matter 7, 4351–4358 (1995).
[CrossRef]

Knight, J. C.

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Kob, W.

A.  Roder, W.  Kob, K.  Binder, “Structure and dynamics of amorphous silica surfaces,” J. Chem. Phys. 114, 7602–7614 (2001).
[CrossRef]

Koch, K. W.

J. A.  West, C. M.  Smith, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485.
[CrossRef] [PubMed]

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Kucuk, A.

A.  Kucuk, A. G.  Clare, L.  Jones, “An estimation of the surface tension for silicate glass melts at 1400 °C using statistical analysis,” Glass Technol. 40, 149–153 (1999).

Kuriki, K.

Kuriki, Y.

Kurkjian, C. R.

P. K.  Gupta, D.  Inniss, C. R.  Kurkjian, Q.  Zhong, “Nanoscale roughness of oxide glass surfaces,” J. Non-Cryst. Solids 262, 200–206 (2000).
[CrossRef]

Lacey, J. P. R.

F. P.  Payne, J. P. R.  Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

Langford, A.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Lawman, M.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Lines, M. E.

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–1010 (1999).
[CrossRef]

Litchinit ser, N. M.

Love, J. D.

A. W.  Sn yder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Madsen, A.

T.  Seydel, A.  Madsen, M.  Tolan, G.  Grübel, W.  Press, “Capillary waves in slow motion,” Phys. Rev. B 63, 073409 (2001).
[CrossRef]

Mangan, B. J.

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Maskaly, G. R.

S. D.  Hart, G. R.  Maskaly, B.  Temelkuran, P. H.  Prideaux, J. D.  Joannopoulos, Y.  Fink, “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

Mason, M.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Matsui, M.

K.  Nagayama, M.  Kakui, M.  Matsui, I.  Saitoh, Y.  Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38, 1168–1169 (2002).
[CrossRef]

Meade, R. D.

J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

Miya, T.

T.  Miya, Y.  Terunuma, T.  Hosaka, T.  Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

Miyashita, T.

T.  Miya, Y.  Terunuma, T.  Hosaka, T.  Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

Monro, T. M.

A. D.  Fitt, K.  Furusawa, T. M.  Monro, C. P.  Please, D. J.  Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Müller, D.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Nagayama, K.

K.  Nagayama, M.  Kakui, M.  Matsui, I.  Saitoh, Y.  Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38, 1168–1169 (2002).
[CrossRef]

Ocko, B. M.

M. K.  Sanyal, S. K.  Sinha, K. G.  Huang, B. M.  Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66, 628–631 (1991).
[CrossRef] [PubMed]

Ohashi, M.

M.  Ohashi, K.  Shiraki, K.  Tajima, “Optical loss property of silica-based single-mode fibers,” IEEE J. Lightwave Technol. 10, 539–543 (1992).
[CrossRef]

Parikh, N. M.

N. M.  Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958).
[CrossRef]

Payne, F. P.

F. P.  Payne, J. P. R.  Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

Please, C. P.

A. D.  Fitt, K.  Furusawa, T. M.  Monro, C. P.  Please, D. J.  Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Prange, W.

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Press, W.

T.  Seydel, A.  Madsen, M.  Tolan, G.  Grübel, W.  Press, “Capillary waves in slow motion,” Phys. Rev. B 63, 073409 (2001).
[CrossRef]

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Prideaux, P. H.

S. D.  Hart, G. R.  Maskaly, B.  Temelkuran, P. H.  Prideaux, J. D.  Joannopoulos, Y.  Fink, “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

Reed, W. A.

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–1010 (1999).
[CrossRef]

Richardson, D. J.

A. D.  Fitt, K.  Furusawa, T. M.  Monro, C. P.  Please, D. J.  Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Roberts, P. J.

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Roder, A.

A.  Roder, W.  Kob, K.  Binder, “Structure and dynamics of amorphous silica surfaces,” J. Chem. Phys. 114, 7602–7614 (2001).
[CrossRef]

Roussinov, V. I.

A. L.  Yarin, P.  Gospodinov, V. I.  Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys. Fluids 6, 1454–1463 (1994).
[CrossRef]

Russell, P. St.J.

P. St.J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

Sabert, H.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

Saitoh, I.

K.  Nagayama, M.  Kakui, M.  Matsui, I.  Saitoh, Y.  Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38, 1168–1169 (2002).
[CrossRef]

Sanyal, M. K.

M. K.  Sanyal, S. K.  Sinha, K. G.  Huang, B. M.  Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66, 628–631 (1991).
[CrossRef] [PubMed]

Schlomka, J.-P.

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Seydel, T.

T.  Seydel, A.  Madsen, M.  Tolan, G.  Grübel, W.  Press, “Capillary waves in slow motion,” Phys. Rev. B 63, 073409 (2001).
[CrossRef]

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Shapira, O.

Shiraki, K.

M.  Ohashi, K.  Shiraki, K.  Tajima, “Optical loss property of silica-based single-mode fibers,” IEEE J. Lightwave Technol. 10, 539–543 (1992).
[CrossRef]

Sinha, S. K.

M. K.  Sanyal, S. K.  Sinha, K. G.  Huang, B. M.  Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66, 628–631 (1991).
[CrossRef] [PubMed]

Smilgies, D.

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Smith, C. M.

J. A.  West, C. M.  Smith, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485.
[CrossRef] [PubMed]

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Sn yder, A. W.

A. W.  Sn yder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Struth, B.

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Tajima, K.

M.  Ohashi, K.  Shiraki, K.  Tajima, “Optical loss property of silica-based single-mode fibers,” IEEE J. Lightwave Technol. 10, 539–543 (1992).
[CrossRef]

Temelkuran, B.

S. D.  Hart, G. R.  Maskaly, B.  Temelkuran, P. H.  Prideaux, J. D.  Joannopoulos, Y.  Fink, “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

Terunuma, Y.

T.  Miya, Y.  Terunuma, T.  Hosaka, T.  Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

Tolan, M.

T.  Seydel, A.  Madsen, M.  Tolan, G.  Grübel, W.  Press, “Capillary waves in slow motion,” Phys. Rev. B 63, 073409 (2001).
[CrossRef]

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Tomlinson, A.

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

Venkataraman, N.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Viens, J. F.

West, J. A.

J. A.  West, C. M.  Smith, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485.
[CrossRef] [PubMed]

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Williams, D. P.

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

Winn, J. N.

J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

Yarin, A. L.

A. L.  Yarin, P.  Gospodinov, V. I.  Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys. Fluids 6, 1454–1463 (1994).
[CrossRef]

Zhong, Q.

P. K.  Gupta, D.  Inniss, C. R.  Kurkjian, Q.  Zhong, “Nanoscale roughness of oxide glass surfaces,” J. Non-Cryst. Solids 262, 200–206 (2000).
[CrossRef]

Electron. Lett. (3)

K.  Nagayama, M.  Kakui, M.  Matsui, I.  Saitoh, Y.  Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38, 1168–1169 (2002).
[CrossRef]

T.  Miya, Y.  Terunuma, T.  Hosaka, T.  Miyashita, “Ultimate low-loss single-mode fibre at 1.55 µm,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–1010 (1999).
[CrossRef]

Glass Technol. (1)

A.  Kucuk, A. G.  Clare, L.  Jones, “An estimation of the surface tension for silicate glass melts at 1400 °C using statistical analysis,” Glass Technol. 40, 149–153 (1999).

IEEE J. Lightwave Technol. (1)

M.  Ohashi, K.  Shiraki, K.  Tajima, “Optical loss property of silica-based single-mode fibers,” IEEE J. Lightwave Technol. 10, 539–543 (1992).
[CrossRef]

J. Am. Ceram. Soc. (1)

N. M.  Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18–22 (1958).
[CrossRef]

J. Chem. Phys. (1)

A.  Roder, W.  Kob, K.  Binder, “Structure and dynamics of amorphous silica surfaces,” J. Chem. Phys. 114, 7602–7614 (2001).
[CrossRef]

J. Eng. Math. (1)

A. D.  Fitt, K.  Furusawa, T. M.  Monro, C. P.  Please, D. J.  Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

J. Non-Cryst. Solids (2)

P. K.  Gupta, D.  Inniss, C. R.  Kurkjian, Q.  Zhong, “Nanoscale roughness of oxide glass surfaces,” J. Non-Cryst. Solids 262, 200–206 (2000).
[CrossRef]

R.  Brückner, “Properties and structure of vitreous silica I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

J. Phys.: Condens. Matter (1)

J.  Jäckle, K.  Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys.: Condens. Matter 7, 4351–4358 (1995).
[CrossRef]

Nature (1)

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Müller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. P.  Payne, J. P. R.  Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

Phys. Fluids (1)

A. L.  Yarin, P.  Gospodinov, V. I.  Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys. Fluids 6, 1454–1463 (1994).
[CrossRef]

Phys. Rev. B (1)

T.  Seydel, A.  Madsen, M.  Tolan, G.  Grübel, W.  Press, “Capillary waves in slow motion,” Phys. Rev. B 63, 073409 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

M. K.  Sanyal, S. K.  Sinha, K. G.  Huang, B. M.  Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66, 628–631 (1991).
[CrossRef] [PubMed]

A. K.  Doerr, M.  Tolan, W.  Prange, J.-P.  Schlomka, T.  Seydel, W.  Press, D.  Smilgies, B.  Struth, “Observation of capillary waves on liquid thin films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Science (3)

S. D.  Hart, G. R.  Maskaly, B.  Temelkuran, P. H.  Prideaux, J. D.  Joannopoulos, Y.  Fink, “External Reflection from Omnidirectional Dielectric Mirror Fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

P. St.J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

R. F.  Cregan, B. J.  Mangan, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, P. J.  Roberts, D. C.  Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Other (6)

N. P.  Bansal, R. H.  Doremus, Handbook of Glass Properties (Academic Press, Orlando, 1986).

A. W.  Sn yder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

B. J.  Mangan, L.  Farr, A.  Langford, P. J.  Roberts, D. P.  Williams, F.  Couny, M.  Lawman, M.  Mason, S.  Coupland, R.  Flea, H.  Sabert, T. A.  Birks, J. C.  Knight, P. St.J.  Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.

F.  Couny, H.  Sabert, P. J.  Roberts, D. P.  Williams, A.  Tomlinson, B. J.  Mangan, L.  Farr, J. C.  Knight, T. A.  Birks, P. St.J.  Russell, “Visualization of the photonic band gap in hollow core photonic crystal fibers using side scattering,” submitted to Opt. Express.

J.  Hecht Understanding Fiber Optics (Prentice Hall, Columbus, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph (SEM) of the 1.7 dB/km HC-PCF with a 20 µm diameter core (the 1.2 dB/km fibre discussed in the text was very similar), (b) a digitised representation used for modelling and (c) a similar but idealised structure with lower predicted loss.

Fig. 2.
Fig. 2.

(solid line) The roughness spectrum measured by AFM along a hole in a HC-PCF. The arrows identify artefacts due to electrical noise. (broken red lines) Roughness spectra calculated from Eq. (2) for three values of surface tension. (inset) SEM of the endface of the HC-PCF with a 19-cell core and an attenuation of 1.7 dB/km at 1565 nm wavelength.

Fig. 3.
Fig. 3.

The power P(n) per unit effective index n scattered from 5.5 mm of HC-PCF into fluid of index nf =1.449, as a function of n and of scatter angle θ. The solid grey curve is from measured data and the broken red curve is a fit to Eq. (5). The vertical origin is arbitrary. (inset) Schematic diagram of the experimental setup.

Fig. 4.
Fig. 4.

(solid orange curve) The low-loss part of the measured attenuation spectrum of a 7-cell HC-PCF, with a minimum of 700 dB/km at λc =550 nm. (left inset) Measured near-field pattern at the output of this fibre at 550 nm. (points) The minimum attenuation of similar HC-PCFs with various transverse scales, versus the wavelength λc of minimum attenuation. (broken red line) A straight-line fit to the points, having a slope of -3.07. (right inset) SEM of a representative of these HC-PCFs, with λc ≈1550 nm.

Fig. 5.
Fig. 5.

Modelled bulk (dotted red lines) and surface (broken blue lines) contributions to the net (solid lines) minimum attenuation of 19-cell HC-PCFs, based on actual and plausible attenuation values at 1620 nm wavelength under the assumptions described in the text. Corresponding values of fa are marked on the bulk attenuation curves.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S z ( κ ) = k B T g 4 π γ κ ,
S z ( κ ) = k B T g 4 π γ κ coth ( κ W 2 ) ,
κ = k n n 0 ,
F = ( ε 0 μ 0 ) 1 2 hole perimeters dl E 2 cross sec tion dA E × H * · z ̂ ,
α n ( n ) F n n 0 ,
u 2 = k B T 4 π γ ( n n 0 ) coth ( ( n n 0 ) k W 2 ) δ n
α ( λ c ) 1 λ c 3 .

Metrics